Description
The Cdk7/cyclin H/mnage--trois 1 (MAT1) heterotrimer has proposed functions in transcription as the kinase component of basal transcription factor TFIIH and is activated in adult hearts by hypertrophic pathways. Using cardiac-specific Cre, we ablated MAT1 in myocardium. Despite reduced Cdk7 activity, MAT1-deficient hearts grew normally. However, fatal heart failure ensued at 6-8 weeks. By microarray profiling, quantitative RT-PCR, and Western blotting at 4 weeks, genes for energy metabolism were found to be suppressed selectively, including targets of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1). Cardiac metabolic defects were substantiated in isolated perfused hearts and isolated mitochondria. In culture, deleting MAT1 with Cre disrupted PGC-1 function: PGC-1 failed to activate PGC-1-responsive promoters and nuclear receptors, GAL4-PGC-1 was functionally defective, and PGC-1 likewise was deficient. PGC-1 was shown to interact with MAT1 and Cdk7, in co-precipitation assays. Thus, we demonstrate an unforeseen essential role for MAT1 in operation of the PGC-1 family of co-activators.