Description
The induction of pluripotency or trans-differentiation of one cell type to another can be accomplished with cell lineage-specific transcription factors. Here we report that repression of a single RNA binding protein PTB, which occurs during normal brain development via the action of miR-124, is sufficient to induce trans-differentiation of fibroblasts into functional neurons. Besides its traditional role in regulated splicing, we show that PTB has a previously undocumented function in the regulation of microRNA functions, suppressing or enhancing microRNA targeting by competitive binding on target mRNA or altering local RNA secondary structure. A key event during neuronal induction is the relief of PTB-mediated blockage of microRNA action on multiple components of the REST complex, thereby de-repressing a large array of neuronal genes, including miR-124 and multiple neuronal-specific transcription factors, in non-neuronal cells. This converts a negative feedback loop to a positive one to elicit cellular reprogramming to the neuronal lineage. Overall design: Examination of PTB regulated AGO2/microRNA targeting in Hela cells by CLIP-seq (two biological replicates) , paired-end RNA-seq (control and PTB knockdown) and 3’end stability RNA-seq (control and PTB knockdown)