refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 55 results
Sort by

Filters

Technology

Platform

accession-icon GSE115455
A cancer avatar models prospectively guides therapy
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of transcriptomic fidelity between primary and pdx tumor. The hypothesis tested in the present study was that pdx can serve as high fidelity models of human cancer and guide longitudinal care. Results provide important information on the response of preservation of gene expression changes between the primary tumor and the first generation pdx.

Publication Title

Case study: patient-derived clear cell adenocarcinoma xenograft model longitudinally predicts treatment response.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE66534
The histone chaperone CAF-1 safeguards somatic cell identity during transcription factor-induced reprogramming
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The histone chaperone CAF-1 safeguards somatic cell identity.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE72741
CAF-1 safeguards somatic cell identity during factor-induced reprogramming
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Cellular differentiation involves profound changes in the chromatic landscape, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNAi screens targeting chromatin factors during transcription factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPSCs). Remarkably, subunits of the chromatin assembly factor-1 (CAF-1) complex emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance. Suppression of CAF-1 increased reprogramming efficiency by several orders of magnitude and facilitated iPSC formation in as little as 4 days. Mechanistically, CAF-1 suppression led to a more accessible chromatin structure at enhancer elements early during reprogramming. These changes were accompanied by a decrease in somatic heterochromatin domains, increased binding of Sox2 to pluripotency-specific targets and activation of associated genes. Notably, suppression of CAF-1 also enhanced the direct conversion of B cells into macrophages and fibroblasts into neurons. Together, our findings reveal the histone chaperone CAF-1 as a novel regulator of somatic cell identity during transcription factor-induced cell fate transitions and provide a potential strategy to modulate cellular plasticity in a regenerative setting.

Publication Title

The histone chaperone CAF-1 safeguards somatic cell identity.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon SRP009070
Widespread Generation of Alternative UTRs Contributes to Sex-specific RNA Binding by UNR
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

Upstream of N-ras (UNR) is a conserved RNA-binding protein that regulates mRNA translation and stability by binding to sites generally located in untranslated regions (UTRs). In Drosophila, sex-specific binding of UNR to msl2 mRNA and the non-coding RNA roX plays key roles in the control of X-chromosome dosage compensation in both sexes. In order to investigate broader sex-specific functions of UNR, we have identified its RNA targets in adult male and female flies by high-throughput RNA binding and transcriptome analysis. Here we show that UNR binds to a large set of protein-coding transcripts and to a smaller set of non-coding RNAs in a sex-specific fashion. Overall design: Two replicates of UNR IP were performed in D.melanogaster adult males and females, and enrichment in either sex was compared with IgG IP as control. To correlate sex-specific UNR binding with sex-specific transcription and splicing we performed RNA-Seq experiments in males and females.

Publication Title

Widespread generation of alternative UTRs contributes to sex-specific RNA binding by UNR.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP074888
Transcriptome-wide mRNA alterations in Streptozotocin induced Type I diabetic mouse heart
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We sequenced mRNA from Left Ventricles of Streptozotocin induced Type I diabetic mouse hearts or mock treated controls at 4 weeks post-treatment in order to assess alternative splicing changes. Overall design: Heart mRNA profiles of Control and Diabetic (STZ:T1D) mice were generated by deep sequencing using Illumina HiSeq 1000.

Publication Title

Dysregulation of RBFOX2 Is an Early Event in Cardiac Pathogenesis of Diabetes.

Sample Metadata Fields

Age, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE20053
C. elegans gene expression in response to Y. pestis KIM5 infection
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

The response of the nematode C. elegans to Y. pestis infection was evaluated by gene expression profiling. A synchronized population of nematodes were exposed to Y. pestis KIM5 for 24h. Transcript levels from Y. pestis-treated animals were compared with animals maintained on relatively nonpathogenic E. coli OP50 for 24h.

Publication Title

A conserved PMK-1/p38 MAPK is required in caenorhabditis elegans tissue-specific immune response to Yersinia pestis infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27867
Expression data from C. elegans (wild type vs. tag-24)
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

To provide insights into the mechanism underlying the enhanced immunity of tag-24/octr-1 animals, we used genome microarrays to find clusters of genes commonly misregulated in tag-24 relative to wild-type animals grown on live P. aeruginosa.

Publication Title

Neuronal GPCR controls innate immunity by regulating noncanonical unfolded protein response genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE81440
Identification of an NKX3.1-G9a-UTY regulatory network that controls prostate differentiation
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

To investigate the role of NKX3.1 in prostate differentiation, we employed transcriptome analysis of mouse seminal vesicle (from 15-month-old Nkx3.1+/+ mice); mouse prostate (from 4-month-old Nkx3.1+/+ and Nkx3.1-/- mice); human prostate cells (RWPE1 cells engineered with empty vector (altered pTRIPZ), NKX3.1 wild type over-expression, and NKX3.1 (T164A) mutant over-expression); and tissue recombinants (generated from combining engineered mouse epithelial cells (seminal vesicle epithelial cells or prostate epithelial cells from 2-month-old mice) and rat UGS mesenchymal cells). Mouse tissue or human cells were snap frozen for subsequent molecular analysis.

Publication Title

Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation.

Sample Metadata Fields

Age, Specimen part, Cell line

View Samples
accession-icon GSE69214
Predicting drug response in human prostate cancer from preclinical analysis of in vivo mouse models
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Predicting Drug Response in Human Prostate Cancer from Preclinical Analysis of In Vivo Mouse Models.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE69211
Predicting drug response in human prostate cancer from preclinical analysis of in vivo mouse models (I)
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of the transcriptome of mouse models of prostate cancer after treatment with rapamycin and PD0325901 combination therapy or standard of care docetaxel. The Nkx3.1CreERT2/+; Ptenflox/flox; KrasLSL-G12D/+ (NPK mice) was used in this study. Two months after tumor induction, mice were randomly assigned to vehicle (Veh) or treatments groups, such as rapamycin and PD0325901 (RAPPD) or docetaxel (Docetaxel). For the treatment groups mice were administered rapamycin (10 mg/kg) and PD0325901 (10 mg/kg) or docetaxel (10 mg/kg) for 5 days (SHORT) or for 1 month (LONG). At the end of the treatment, mice were euthanized, tumors harvested and snap frozen for subsequent molecular analysis.

Publication Title

Predicting Drug Response in Human Prostate Cancer from Preclinical Analysis of In Vivo Mouse Models.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact