refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 126 results
Sort by

Filters

Technology

Platform

accession-icon GSE69182
Exon level expression profiling of colorectal cancer tissue samples (77 samples)
  • organism-icon Homo sapiens
  • sample-icon 77 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

These colorectal cancer (CRC) samples have been analyzed by exon expression profiling to identify genes with overexpression of 3 parts. By characterizing underlying transcript structures of such genes with a combination of rapid amplification of cDNA ends and deep-sequencing (RACE-seq), we identify and describe novel RNA-variants in CRC.

Publication Title

Novel RNA variants in colorectal cancers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36169
Prostaglandin D2 Inhibits Hair Growth and Is Elevated in Bald Scalp of Men with Androgenetic Alopecia
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Testosterone is necessary for the development of male pattern baldness, known as androgenetic alopecia (AGA); yet the mechanisms for decreased hair growth in this disorder are unclear. Here, we show that prostaglandin D2 synthase (PTGDS) is elevated at the mRNA and protein levels in bald scalp compared to haired scalp of men with AGA. The product of PTGDS enzyme activity, prostaglandin D2 (PGD2), is similarly elevated in bald scalp. During normal follicle cycling in mice Ptgds and PGD2 levels increase immediately preceding the regression phase, suggesting an inhibitory effect on hair growth. We show that PGD2 inhibits hair growth in explanted human hair follicles and when applied topically to mice. Hair growth inhibition requires the PGD2 receptor G protein-coupled receptor 44 (GPR44), but not the prostaglandin D2 receptor 1(PTGDR). Furthermore, we find that a transgenic mouse, K14-Ptgs2, which targets prostaglandin-endoperoxide synthase 2 expression to the skin, demonstrates elevated levels of PGD2 in the skin and develops alopecia, follicular miniaturization and sebaceous gland hyperplasia, which are all hallmarks of human AGA. These results define PGD2 as an inhibitor of hair growth in AGA and suggest the PGD2-GPR44 pathway as a potential target for treatment.

Publication Title

Prostaglandin D2 inhibits hair growth and is elevated in bald scalp of men with androgenetic alopecia.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP072669
Expression profile of TRAMP-C1 cell line with PAX8-NFE2L2 overexpression
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We synthesized the PAX8-NFE2L2 fusion transcript and cloned it into a lentiviral vector, and used this to overexpress it in the murine prostate adenocarcinoma cell line TRAMP-C1. Overall design: We used high coverage RNA sequencing (>30 million reads per sample) to compare the expression profiles of cells expressing the PAX8-NFE2L2 fusion transcript to cells transduced with an empty vector.

Publication Title

Global analysis of somatic structural genomic alterations and their impact on gene expression in diverse human cancers.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE29774
Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Genome-Wide Human SNP 6.0 Array (genomewidesnp6), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29773
Gene Expression Data for Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Patient-specific induced pluripotent stem cells (iPSCs) derived from somatic cells provide a unique tool for the study of human disease in disease relevant cells, as well as a promising source for cell replacement therapies for degenerative diseases. However one of the crucial limitations before realizing the full promise of this disease in a dish approach has been the inability to do controlled experiments under genetically defined conditions. This is particularly relevant for disorders with long latency periods, such as Parkinsons disease (PD), where in vitro phenotypes of patient-derived iPSCs are predicted to be subtle and susceptible to significant epistatic effects of genetic background variations. By combining zinc-finger nuclease (ZFN)-mediated genome editing and iPSC technology we provide a generally applicable solution to this key problem by generating isogenic pairs of disease and control human embryonic stem cells (hESCs) and hiPSCs lines that differ exclusively at a susceptibility variant for PD by modifying a single point mutation (A53T) in the -synuclein gene. The robust capability to genetically correct disease causing point mutations in patient-derived hiPSCs represents not only a significant progress for basic biomedical research but also a major advancement towards hiPSC-based cell replacement therapies using autologous cells.

Publication Title

Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18956
Genome-wide analysis of human pulmonary artery endothelial cells after knockdown of either BMPRII or beta-catenin
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Expression analysis of genes potentially regulated by BMPRII and beta-catenin. BMPRII has been linked as a genetic factor to the disease pulmonary arterial hypertension.

Publication Title

Disruption of PPARγ/β-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP049523
Peroxisome Proliferator-activated Receptor gamma- Deficiency in Endothelial Cells Impairs Angiogenic Capacity by Loss-of E2F1 Mediated Wnt Effector Genes
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Some of the functions and mechanisms of PPAR?-mediated regulation of vascular homeostasis have been revealed, the potential role of PPAR? in angiogenesis is obscure. In human ECs, PPAR?-deficiency was studied using siRNA strategy and RNA sequencing was utilized to reveal angiogenesis-associated targets for PPARg. Overall design: Our aim is to reveal the possible role of PPARy in angiogenesis.

Publication Title

Loss of PPARγ in endothelial cells leads to impaired angiogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE58857
A transcriptional map following the developmental trajectory of the Arabidopsis stomatal lineage
  • organism-icon Arabidopsis thaliana
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Developmental transitions can be described in terms of morphology and individual genes expression patterns, but also in terms of global transcriptional and epigenetic changes. Most of the large-scale studies of such transitions, however, have only been possible in synchronized cell culture systems. Here we generate a cell type specific transcriptome of an adult stem-cell lineage in the Arabidopsis leaf using RNA sequencing and microarrays. RNA profiles of stomatal entry, commitment, and differentiating cells, as well as of mature stomata and the entire aerial epidermis give a comprehensive view of the developmental progression.

Publication Title

Transcriptome dynamics of the stomatal lineage: birth, amplification, and termination of a self-renewing population.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE58855
A transcriptional map following the developmental trajectory of the Arabidopsis stomatal lineage
  • organism-icon Arabidopsis thaliana
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Developmental transitions can be described in terms of morphology and individual genes expression patterns, but also in terms of global transcriptional and epigenetic changes. Most of the large-scale studies of such transitions, however, have only been possible in synchronized cell culture systems. Here we generate a cell type specific transcriptome of an adult stem-cell lineage in the Arabidopsis leaf using RNA sequencing and microarrays. RNA profiles of stomatal entry, commitment, and differentiating cells, as well as of mature stomata and the entire aerial epidermis give a comprehensive view of the developmental progression.

Publication Title

Transcriptome dynamics of the stomatal lineage: birth, amplification, and termination of a self-renewing population.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48112
BET Bromodomains Mediate Transcriptional Pause Release in Heart Failure
  • organism-icon Mus musculus, Rattus norvegicus
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

BET bromodomains mediate transcriptional pause release in heart failure.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact