Spiroplasma (Mollicutes) is one of the heritable bacterial endosymbionts of Drosophila species. Several strains like S. poulsonii manipulate host reproduction in a selfish manner. When females of D. melanogaster are infected with natural S. poulsonii strain MSRO (melanogaster sex ratio organism), only male offspring are killed during embryogenesis, and this phenomenon is called male-killing. To understand the molecular mechanism of male-killing, we compared gene expression profiles between MSRO-infected and uninfected embryos of D. melanogaster by using RNA-sequencing (RNA-seq). For embryonic sexing, we employed a transgenic reporter strain Sex-lethal (Sxl)-Pe-EGFP, which expresses GFP only in females. We collected female and male embryos at stage 10-11, when abnormal apoptosis associated with male-killing starts to occur in male progenies. For each sample, we analyzed three biological replicates.
Male-killing symbiont damages host's dosage-compensated sex chromosome to induce embryonic apoptosis.
No sample metadata fields
View SamplesThe p53 family consists of three members, p53, p73, and p63. These proteins share a high degree of amino-acid sequence similarity and major functional domains. The p53 gene, the first member of the family to be identified, is the most frequent target gene for genetic alterations in human cancers. In contrast, p73 and p63 are mainly involved in normal development and differentiation. These differences among the p53 family are likely to depend on activation or repression of different sets of target genes. In this study, to identify targets specifically regulated by p73, we performed microarray analysis and compared expression patterns in a human steosarcoma cell line Saos-2 infected separately with p53 and TAp73beta expressing adenovirus.
p53 family members regulate the expression of the apolipoprotein D gene.
No sample metadata fields
View Samples