refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 76 results
Sort by

Filters

Technology

Platform

accession-icon GSE3037
Stimulation by LPS and HMGB1 in peripheral blood neutrophils from patients with sepsis-induced acute lung injury
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Peripheral blood neutrophils were isolated from septic patients and treated in vitro with LPS or HMGB1

Publication Title

HMGB1 and LPS induce distinct patterns of gene expression and activation in neutrophils from patients with sepsis-induced acute lung injury.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36006
Common PIK3CA mutants and a novel 3UTR mutation are associated with increased sensitivity to saracatinib
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Sensitive versus Resistant patient-derived colorectal cancer tumor xenografts with PIK3CA mutant against saracatinib (AZD0530)

Publication Title

Common PIK3CA mutants and a novel 3' UTR mutation are associated with increased sensitivity to saracatinib.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP045898
Potent antitumor activity of Cabozantinib, a c-MET and VEGFR2 Inhibitor, in a Colorectal Cancer Patient-derived Tumor Explant Model
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Anti-angiogenic therapy is commonly used for the treatment of CRC. Although patients derive some clinical benefit, treatment resistance inevitably occurs. The MET signaling pathway has been proposed to be a major contributor of resistance to anti-angiogenic therapy. MET is upregulated in response to VEGF pathway inhibition and plays an essential role in tumorigenesis and progression of tumors. In this study we set out to determine the efficacy of cabozantinib in a preclinical CRC PDTX model. We demonstrate potent inhibitory effects on tumor growth in 80% of tumors treated. The greatest antitumor effects were observed in tumors that possess a mutation in the PIK3CA gene. The underlying antitumor mechanisms of cabozantinib consisted of inhibition of angiogenesis and Akt activation and significantly decreased expression of genes involved in the PI3K pathway. These findings support further evaluation of cabozantinib in patients with CRC. PIK3CA mutation as a predictive biomarker of sensitivity is intriguing and warrants further elucidation. A clinical trial of cabozantinib in refractory metastatic CRC is being activated. Overall design: CRC PDTX Model treated with cabozantinib

Publication Title

Potent antitumor activity of cabozantinib, a c-MET and VEGFR2 inhibitor, in a colorectal cancer patient-derived tumor explant model.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40564
Targeting the Phosphoinositide 3-Kinase p110 Isoform Impairs Cell Proliferation, Survival and Tumor Growth in Small Cell Lung Cancer
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Purpose: The phosphoinositide 3-kinase (PI3K) pathway is fundamental for cell proliferation and survival and is frequently altered and activated in neoplasia, including carcinomas of the lung. In this study we investigated the potential of targeting the catalytic class IA PI3K isoforms in small cell lung cancer (SCLC), which is the most aggressive of all lung cancer types. Experimental Design: The expression of PI3K isoforms in patient specimens was analyzed. The effects on SCLC cell survival and downstream signaling were determined following PI3K isoform inhibition by selective inhibitors or down-regulation by small interfering RNA. Results: Over-expression of the PI3K isoforms p110 and p110 was shown by immunohistochemistry in primary SCLC tissue samples. Targeting the PI3K p110 with RNA interference (RNAi) or selective pharmacological inhibitors resulted in strongly affected cell proliferation of SCLC cells in vitro and in vivo, while targeting p110 was less effective. Inhibition of p110 also resulted in increased apoptosis and autophagy, which was accompanied by decreased phosphorylation of Akt and components of the mammalian target of rapamycin (mTOR) pathway, such as the ribosomal S6 protein, and the eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). A DNA microarray analysis revealed that p110 inhibition profoundly affected the balance of pro- and anti-apoptotic Bcl-2 family proteins. Finally, p110 inhibition led to impaired SCLC tumor formation and vascularization in vivo. Conclusion: Together our data demonstrate the key involvement of the PI3K isoform p110 in multiple tumor-promoting processes in SCLC.

Publication Title

Targeting the phosphoinositide 3-kinase p110-α isoform impairs cell proliferation, survival, and tumor growth in small cell lung cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE22139
Bone morphogenetic protein-7 is a MYC target with pro-survival functions in childhood medulloblastoma
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Medulloblastoma (MB) is the most common malignant brain tumor in children, among whom overexpression or amplification of MYC oncogenes has been associated with poor clinical outcome. Although the MYC functions during normal development and oncogenesis in various systems have been extensively investigated, the transcriptional targets mediating MYC effects in MB are still elusive. Their identification and roles during MB onset and progression are important and will ultimately suggest novel potential therapeutic targets. cDNA microarray analysis was used to compare the effects of overexpressing and silencing MYC on the transcriptome of a MB-derived cell line. We identified 209 genes with potential relevance to MYC-dependent cellular responses in MB. Among the MYC-responsive genes, we found members of the bone morphogenetic protein (BMP) signaling pathway, which plays a crucial role during the development of the cerebellum. In particular, the cytokine gene BMP7 was identified as a direct target of MYC in MB cells. Similar to the effect induced by BMP7 silencing by siRNA, the use of a small-molecule inhibitor of the BMP/SMAD signaling pathway reduced cell viability in a panel of MB cells. Altogether, our findings indicate that high MYC levels drive BMP7 expression in MB to induce pro-survival and pro-proliferative cellular pathways. This observation suggests that targeting the BMP/SMAD pathway may be a new therapeutic concept for the treatment of childhood MB.

Publication Title

Bone morphogenetic protein-7 is a MYC target with prosurvival functions in childhood medulloblastoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE36618
Mechanisms of terminal erythroid differentiation defect in EKLF-deficient mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

EKLF is a Krppel-like transcription factor identified as a transcriptional activator and chromatin modifier in erythroid cells. EKLF-deficient (Eklf -/-) mice die at day 14.5 of gestation from severe anemia. In this study, we demonstrate that early progenitor cells fail to undergo terminal erythroid differention in Eklf -/- embryos. To discover potential EKLF target genes responsible for the failure of erythropoiesis, transcriptional profiling was performed with RNA from wild type and Eklf -/- early erythroid progenitor cells. These analyses identified significant perturbation of a network of genes involved in cell cycle regulation, with the critical regulator of the cell cycle, E2f2, at a hub. E2f2 mRNA and protein levels were markedly decreased in Eklf -/- early erythroid progenitor cells, which showed a delay in the G1-to-S-phase transition. Chromatin immunoprecipitation analysis demonstrated EKLF occupancy at the proximal E2f2 promoter in vivo. Consistent with the role of EKLF as a chromatin modifier, EKLF binding-sites in the E2f2 promoter were located in a region of EKLF-dependent DNase I sensitivity in early erythroid progenitor cells. We propose a model in which EKLF-dependent activation and modification of the E2f2 locus is required for cell cycle progression preceding terminal erythroid differentiation.

Publication Title

Failure of terminal erythroid differentiation in EKLF-deficient mice is associated with cell cycle perturbation and reduced expression of E2F2.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE138078
PRRX1 overexpression in MDA-MB-231 breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

To investigate downstream targets of PRRX1, we used MDA-MB-231 (MDA231) breast cancer cells which express low level of PRRX1 to generate a stable cell line where human PRRX1 was ectopically overexpressed

Publication Title

A gene regulatory network to control EMT programs in development and disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP055992
Transcriptome-wide analysis of gene expression in 4-day-old WT and athb1-1 mutant seedlings grown under short day conditions
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

To understand which genes acts downstream AtHB1 affecting hypocotyl growth in Arabidopsis thaliana, we performed transcriptional profiles of 4-day-old seedlings grown in a short-day regime comparing wild-type with athb1-1 mutant plants. These results show that some of the AtHB1-regulated genes modulate cell elongation, particularly cell wall composition and elongation, or encode proteins that serve as a source of carbon, nitrogen, and sulfur for early seedling growth. Overall design: RNA-Seq data for 4-day-old wild-type (Col-0) and athb1-1 mutant seedlings grown under short-day conditions. Biological triplicates were performed for each genotype analyzed.

Publication Title

Arabidopsis thaliana HomeoBox 1 (AtHB1), a Homedomain-Leucine Zipper I (HD-Zip I) transcription factor, is regulated by PHYTOCHROME-INTERACTING FACTOR 1 to promote hypocotyl elongation.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE31660
Gene expression associated with compatible viral diseases in berry
  • organism-icon Vitis vinifera
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Vitis vinifera (Grape) Genome Array (vitisvinifera)

Description

To understand the fruit changes and mechanisms involved in the compatible grapevine-virus interaction, we analyzed the berry transcriptome in two stages of development (veraison and ripening) in the red wine cultivar Cabernet Sauvignon infected with Grapevine leaf-roll-associated virus-3 (GLRaV-3). Analysis of global gene expression patterns indicate incomplete berry maturation in infected berries as compared to uninfected fruit suggesting viral infection interrupts the normal berry maturation process.

Publication Title

Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE32659
Expression data from arabidopsis root in response to boron toxicity
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Boron is an essential micronutrient for plants and is taken up in the form of boric acid (BA). Despite this, a high BA concentration is toxic for the plants, inhibiting root growth and is thus a significant problem in semi-arid areas in the world. In this work, we report the molecular basis for the inhibition of root growth caused by boron. We used microarrays to detail the global gene expression underlying boron toxicity in roots.

Publication Title

A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact