refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 37 results
Sort by

Filters

Technology

Platform

accession-icon SRP069869
Gene expression profiling of Drosophila melanogaster 30 minutes after alcohol exposure
  • organism-icon Drosophila melanogaster
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We sequenced mRNA extracted from heads of a D. melanogaster population that was sedated with a stream of ethanol saturated vapor, 30 minutes before RNA extraction; and from an age-matched untreated control group. Differential gene expression between the two groups was calculated and reported. Overall design: Examination of mRNA levels in heads of D. melanogaster adult females after ethanol exposure was performed using next generation sequencing (NGS) technology.

Publication Title

Alcohol resistance in Drosophila is modulated by the Toll innate immune pathway.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon SRP099137
Global transcriptional profiling using RNA sequencing and DNA methylation patterns in highly enriched mesenchymal cells from young versus elderly women.
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: Identification of relevant genetic pathways that are altered with aging knowing that the precursors for bone-forming osteoblasts reside in the mesenchymal cell population of bone marrow. Method: harvested and characterized, without in vitro culture, mesenchymal cells form human bone marrow capable of osteogenic differentiation Results: Identification of differentially regulated genes with aging in a highly enriched human bone marrow mesenchymal cell population. Conclusions: we have for the first time identified age-related differential gene expression and DNA methylation patterns in a highly enriched human bone marrow mesenchymal cell populationprofiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within a cell or tissue. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions. Overall design: Examination of gene expression and DNA methylation patterns from a highly enriched bone marrow mesenchymal cell population from young (mean age, 28.7 years) versus old (mean age, 73.3 years) women

Publication Title

Global transcriptional profiling using RNA sequencing and DNA methylation patterns in highly enriched mesenchymal cells from young versus elderly women.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP164689
Post-developmental deletion of adipocytes autophagy
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Autophagy is a homeostatic cellular process involved in the degradation of long-lived/damaged cellular components. The role of autophagy in adipogenesis is well recognized, but its role in mature adipocyte function is largely unknown. We show that the autophagy proteins Atg3 and Atg16L1 are required for proper mitochondrial function in mature adipocytes. In contrast to previous studies, we found that post-developmental ablation of autophagy causes peripheral insulin resistance independently of diet or adiposity. Finally, lack of adipocyte autophagy reveals a - cross talk between fat and liver mediated by lipid peroxide-induced Nrf2 signaling. Our data reveal a - role for autophagy in preventing lipid peroxide formation and their transfer in insulin-sensitive peripheral tissues Overall design: Epididymal adipose tissue from 4 WT and 4 Adiponectin-Cre Atg3f/f male mice fed chow diet

Publication Title

Autophagy Ablation in Adipocytes Induces Insulin Resistance and Reveals Roles for Lipid Peroxide and Nrf2 Signaling in Adipose-Liver Crosstalk.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE8863
Mouse mammary tumor-initiating cells
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Using a syngeneic p53 null mouse mammary gland tumor model that closely mimics human breast cancer, we have identified by limiting dilution transplantation as well as in vitro mammosphere and clonogenic assays a Lin-CD29HighCD24High subpopulation of tumor-initiating cells. Differentially expressed genes in the Lin-CD29HighCD24High mouse mammary gland tumor-initiating cell population include those involved in DNA damage response and repair, as well as genes involved in epigenetic regulation previously shown to be critical for stem cell self-renewal.

Publication Title

Identification of tumor-initiating cells in a p53-null mouse model of breast cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE85224
Transcriptional profiling of GDF11 or TGFB1 stimulated NMuMG 3D spheroids
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

The objective of this study was to identify transcriptional changes differentially regulated by GDF11 stimulation compared to TGFB1

Publication Title

Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration in Triple-Negative Breast Cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP061607
An ectopic network of transcription factors regulated by Hippo signaling drives growth and invasion of a malignant tumor model [larval wild type discs]
  • organism-icon Drosophila melanogaster
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Cancer cells have abnormal gene expression profiles, however, the transcription factors and the architecture of the regulatory network that drive cancer specific gene expression is often not known. Here we studied a model of Ras-driven invasive tumorigenesis in Drosophila epithelial tissues and combined in vivo genetics with high-throughput sequencing and computational modeling to decipher the regulatory logic of tumor cells. Surprisingly, we discovered that the bulk of the tumor specific gene expression is driven by an ectopic network of a few transcription factors that are overexpressed and/or hyperactivated in tumor cells. These factors are Stat, AP-1, the bHLH proteins Myc and AP-4, the nuclear hormone receptor Ftz-f1, the nuclear receptor coactivator Taiman/AIB1, and Mef2. Notably, many of these transcription factors are also hyperactivated in human tumors. Bioinformatics analysis predicted that these factors directly regulate the majority of the tumor specific gene expression, that they are interconnected by extensive cross-regulation, and that they show a high degree of co-regulation of target genes. Indeed, the factors of this network were required in multiple epithelia for tumor growth and invasiveness and knock-down of individual factors caused a reversion of the tumor specific expression profile, but had no observable effect on normal tissues. We further found that the Hippo pathway effector Yki/Sd was strongly activated in tumor cells and initiated cellular reprogramming by activating several transcription factors of this network. Thus, modeling regulatory networks identified an ectopic yet highly ordered network of master regulators that control tumor cell specific gene expression. Overall design: RNA-seq gene expression profiling across Drosophila 3rd instar larval wild type wing discs and genetic perturbations of wts.

Publication Title

An Ectopic Network of Transcription Factors Regulated by Hippo Signaling Drives Growth and Invasion of a Malignant Tumor Model.

Sample Metadata Fields

Subject, Time

View Samples
accession-icon SRP134092
Snapshot of translation in mammalian cells that are depleted of polyamines or replete with polyamines
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Snapshot of translation in mammalian cells that are depleted of polyamines or replete with polyamines. Hek293T cells treated with DFMO or Spermidine. Overall design: DFMO vs. Spermidine treatment

Publication Title

Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing.

Sample Metadata Fields

Disease, Treatment, Subject

View Samples
accession-icon GSE21006
Pheochromocytoma in rats with multiple endocrine neoplasia (MENX) shares gene expression patterns with human pheochromocytoma
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

MENX is a rat multiple endocrine neoplasia syndrome caused by a homozygous mutation of the Cdkn1b gene, encoding p27Kip1. Affected rats develop adrenomedullary hyperplasia which progresses to pheochromocytoma with time (incidence 100%), and to extra-adrenal pheochromocytoma (paraganglioma) (68%).

Publication Title

Pheochromocytoma in rats with multiple endocrine neoplasia (MENX) shares gene expression patterns with human pheochromocytoma.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE15516
Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina mouse-6 v1.1 expression beadchips

Description

Human clinical trials in type 1 diabetes (T1D) patients are underway using mesenchymal stem cells (MSC) without prior validation in a mouse model for the disease. In response to this void, we characterized bone marrow-derived murine MSC for their ability to modulate immune responses in the context of T1D, as represented in non-obese diabetic (NOD) mice. In comparison to NOD-, BALB/c-MSC express higher levels of the negative costimulatory molecule PD-L1 and promote a shift toward Th2-like responses in treated NOD mice. In addition, transfer of MSC from resistant strains (i.e. NOR or BALB/c), but not from NOD mice, conferred disease protection when administered to prediabetic NOD mice. The number of BALB/c-MSC trafficking to the pancreatic lymph nodes of NOD mice was higher than in NOD mice provided autologous NOD-MSC. Administration of BALB/c-MSC resulted in reversal of hyperglycemia in 90% of NOD mice (p=0.002). Transfer of autologous NOD-MSC imparted no such therapeutic benefit, and in fact soft tissue and visceral tumors were uniquely observed in this setting (i.e. no tumors were present with BALB/c- or NOR-MSC transfer). These data provide important preclinical data supporting the basis for further development of allogeneic MSC-based therapies for T1D and potentially, other autoimmune disorders.

Publication Title

Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE5122
Identification of molecular predictors of response in a study of tipifarnib treatment in relapsed and refractory AML
  • organism-icon Homo sapiens
  • sample-icon 58 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Gene signatures were derived to separate responders from nonresponders by tipifarnib treatment.

Publication Title

Identification of molecular predictors of response in a study of tipifarnib treatment in relapsed and refractory acute myelogenous leukemia.

Sample Metadata Fields

Sex, Age

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact