The goal of this experiment was to explore the extent of KIN10 (At3g01090) transcriptional regulation and identify its early target genes in Arabidopsis mesophyll protoplasts. Results suggest that KIN10 targets a remarkably broad array of genes that orchestrate transcription networks, promote catabolism and autophagy, and suppress anabolism and ribosome biogenesis. The transient expression condition ruled out secondary or long-term effects of metabolism and growth, and circumvented experimental limitations caused by redundancy and embryonic lethality observed in mammals and plants.
A central integrator of transcription networks in plant stress and energy signalling.
No sample metadata fields
View SamplesThe goal of this experiment was to investigate the early transcript changes (6h) induced by hypoxia treatment in mesophyll protoplasts. A single pair (control & hypoxia) of GeneChips was used to confirm that hypoxia treatment altered the expression of an overlapping set of genes controlled by KIN10 (At3g01090) in Arabidopsis mesophyll protoplasts.
A central integrator of transcription networks in plant stress and energy signalling.
No sample metadata fields
View SamplesThe SnRK1 protein kinase, the plant ortholog of mammalian AMPK and yeast Snf1, is activated by the energy depletion caused by adverse environmental conditions. Upon activation, SnRK1 triggers extensive transcriptional changes to restore homeostasis and promote stress tolerance and survival partly through the inhibition of anabolism and the activation of catabolism. Despite the identification of a few bZIP transcription factors as downstream effectors, the mechanisms underlying gene regulation, and in particular gene repression by SnRK1, remain mostly unknown. microRNAs (miRNAs) are 20-24nt RNAs that regulate gene expression post-transcriptionally by driving the cleavage and/or translation attenuation of complementary mRNA targets. In addition to the well-established role of miRNAs as regulators of plant development, mounting evidence implicates miRNAs in the response to environmental stress. Given the involvement of miRNAs in stress responses and the fact that some of the SnRK1-regulated genes are miRNA targets, we postulated that miRNAs drive part of the transcriptional reprogramming triggered by SnRK1 activation. To test this we have performed comparative analyses of the transcriptional response to energy deprivation between WT and dcl1-9, a mutant deficient in miRNA biogenesis.
miRNAs mediate SnRK1-dependent energy signaling in Arabidopsis.
Specimen part, Treatment
View SamplesPurpose: study the role of MALT1 auto-proteolysis in T cell receptor mediated activation of NF-kB. Methods: Jurkat cells were generated that express wild type MALT1, the auto-cleavage deficient MALT1-R149A mutant, the catalytic inactive MALT1-C464A mutant or the R149A-C464A double mutant (RACA). Expression of endogenous MALT1 was inactivated using TALEN technology for the Jurkat cells expressing MALT1-R149A (JDM-RA) and MALT1-C464A (JDM-CA). Illumina HISeq 2000 deep sequencing was performed to determine the mRNA profiles for MALT1, JDM-RA, JDM-CA and RACA cells in unstimulated conditions or after treatment with 75ng/ml PMA and 150 ng/ml ionomycin for 3 or 18 hrs. Results: PMA ionomycin stimulation of the MALT1 auto-cleavage defective JDM-RA cells fails to activate NF-kB-dependent transcription like for the MALT1 catalytic inactive JDM-CA cells and the double RACA mutant cells. Conclusion: MALT1 autoproteolysis is essential for transcription of NF-kB target genes Overall design: mRNA profiles of Jurkat expressing MALT1, MALT1-R149A, MALT1-C464A and MALT1-R149A-C464A after 0, 3 and 18 hours of stimulation with PMA and Ionomycin were generated by deep sequencing, in duplicate, using Illumina HISeq 2000
MALT1 auto-proteolysis is essential for NF-κB-dependent gene transcription in activated lymphocytes.
No sample metadata fields
View Samples3 weeks old aseptically grown WT and loss-of-function lines of SnRK1s (transgenic SnRK1a1 T-DNA insertion mutant line crossed with an estradiol inducible amiRNA construct targeting SnRK1a2) and group S1 bZIPs (bZIP1/bZIP53 T-DNA insertion mutant line crossed with an estradiol inducible amiRNA construct simultaneously targeting bZIP2, bZIP11 and bZIP44) were cultivated for 6h under extended night. Total RNA was extracted from whole seedlings and used for RNAseq library preparation. Overall design: Examination of global transcriptional changes in WT as well as SnRK1 and S1-bZIP knockdown lines in response to short-term dark cultivation.
Snf1-RELATED KINASE1-Controlled C/S<sub>1</sub>-bZIP Signaling Activates Alternative Mitochondrial Metabolic Pathways to Ensure Plant Survival in Extended Darkness.
Age, Subject
View SamplesProper regulation of nuclear factor B (NF-B) transcriptional activity is required for normal lymphocyte function, and deregulated NF-B signaling can facilitate lymphomagenesis. We demonstrate that the API2-MALT1 fusion oncoprotein created by the recurrent t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma induces proteolytic cleavage of NF-Binducing kinase (NIK) at arginine 325. NIK cleavage requires the concerted actions of both fusion partners and generates a C-terminal NIK fragment that retains kinase activity and is resistant to proteasomal degradation. The resulting deregulated NIK activity is associated with constitutive noncanonical NF-B signaling, enhanced B cell adhesion, and apoptosis resistance. Our study reveals the gain-of-function proteolytic activity of a fusion oncoprotein and highlights the importance of the noncanonical NF-B pathway in B lymphoproliferative disease.
Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-kappaB activation.
No sample metadata fields
View SamplesComparison of t(11;18)-positive MALT lymphoma to t(11;18)-negative MALT lymphoma, with a special focus on the NF-KB pathway and it's targets
Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-kappaB activation.
Specimen part
View SamplesIn the normal prostate, most basal and some luminal cells are castration-resistant (CR). The identity of these CR cells and their relation to CR prostate cancer are unresolved. We compared single-cell expression profiles of prostate cells sorted from hormonally nave (HN) and castrated mice. We found both basal and luminal-localized cells, particularly the latter, were molecularly heterogeneous. CR luminal cells and a subset of HN luminal cells exhibited a similar intermediate expression pattern, including high-level expression of multiple prostate stem/progenitor marker genes and androgen receptor gene. We validated LY6D as a marker linking CR luminal cells to luminal progenitors. LY6D+ prostate cells, including LY6D+ luminal cells, were enriched for organoid-forming potential regardless of the presence or absence of androgen. Krt8-based lineage-tracing revealed that LY6D+ CR luminal cells produced LY6D- normal luminal cells upon regeneration, but LY6D+ luminal cancer cells under PTEN-deficiency. Furthermore, prostate cancers originating from CR luminal cells (LY6D+) exhibited a more advanced phenotype than those from HN luminal cells (LY6D+ or LY6D-). Lastly, LY6D amplification/upregulation appear associated with advanced prostate cancer in patient samples. Together, our studies demonstrate LY6D as a novel progenitor marker predictive of lethal CR disease.
Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients.
Specimen part, Cell line, Treatment
View SamplesChromosomal rearrangements involving ETS factors, ERG and ETV1, occur frequently in prostate cancer. We here examine human prostate cancer cells control VCaP and LNCaP cells with ERG- or ETV1-silenced VCaP or LNCaP cells, respectively, in hormone deprived and stimulated conditions.
ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients.
Specimen part, Cell line, Treatment
View Samples