refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 307 results
Sort by

Filters

Technology

Platform

accession-icon GSE10606
F9 Embryonal Carcinoma cell line
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Expression profile for undifferentiated F9 Embryonal Carcinoma cell line

Publication Title

Identification of active transcriptional regulatory modules by the functional assay of DNA from nucleosome-free regions.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64965
Expression profile of osteosarcoma cells in which Sox2 maintains cancer stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Sox2 is required to maintain osteosarcoma cell tumor initiation.Knockdown of Sox2 leads tpo loss of tumorigenic properties. To examine gene expression changes upon Sox2 knockdown, we performed microarray analysis on mouse osteosarcoma cells expressing scrambled or Sox2shRNA. We found that genes upregulated upon Sox2 knockdown included osteoblast diffrentiation genes and genes down regulated included cell cycle and RNA processing genes as well as YAP-TEAD target genes.

Publication Title

Sox2 antagonizes the Hippo pathway to maintain stemness in cancer cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE42008
Expression data from NcGFP ki/+, NcGFP ki/ki and wt (W4) ES cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We generated a gene replacement allele of the E-cadherin locus that express an N-cadherin-GFP fusion in ES cells. Expression profiles of homozygous and heterozygous knock-in ES cells were analyzed in comparison to wt ES cells.

Publication Title

Adhesion, but not a specific cadherin code, is indispensable for ES cell and induced pluripotency.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE61780
Expression data from cells overexpressing c19orf63 (HSS1)
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Human Hematopoietic Signal peptide-containing Secreted 1 (hHSS1) modulates genes and pathways in glioma: implications for the regulation of tumorigenicity and angiogenesis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE61778
Expression data from cells overexpressing c19orf63 (HSS1) [A172]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

A172 cell lines were stable transfected with C19ORF63 (Human hematopoietic peptide secreted-1 - HSS1). HSS1 is a truly novel protein defining a new class of secreted factors. A172 cell line overexpressing HSS1 greatly reduced their proliferation rate compared to mock-transfected cells.

Publication Title

Human Hematopoietic Signal peptide-containing Secreted 1 (hHSS1) modulates genes and pathways in glioma: implications for the regulation of tumorigenicity and angiogenesis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE61779
Expression data from cells overexpressing c19orf63 (HSS1) [U87]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

U87 cell lines were stable transfected with C19ORF63 (Human hematopoietic peptide secreted-1 - HSS1). HSS1 is a truly novel protein defining a new class of secreted factors. U87 cell line overexpressing HSS1 greatly reduced their proliferation rate compared to mock-transfected cells.

Publication Title

Human Hematopoietic Signal peptide-containing Secreted 1 (hHSS1) modulates genes and pathways in glioma: implications for the regulation of tumorigenicity and angiogenesis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP078541
Whole blood RNA sequencing in idiopathic pneumonia syndrome reveals a unique transcriptomic profile compared to ARDS
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The acute respiratory distress syndrome (ARDS) is a highly lethal syndrome characterized by hypoxemia and bilateral lung infiltrates in response to an inciting event such as sepsis. Allogeneic bone marrow transplantation (BMT) is a life-saving treatment for patients with hematologic malignancies that can be complicated by ARDS. We sought to identify blood gene expression signatures that distinguish whether ARDS in BMT may be a distinct pathobiologic entity from ARDS in non-BMT patients. RNA-Seq was used to measure whole blood transcript expression differences between 26 patients meeting the Berlin definition of ARDS: 8 patients without BMT and 5 BMT patients with ARDS from the Brigham and Women's Registry of Critical Illness (RoCI), as well as 7 non-BMT patients with sepsis and 6 BMT patients with sepsis. RNA was globin cleared using the Ambion GLOBINclear kit prior to preparation of poly(A)-selected RNA-Seq libraries with the Illumina TruSeq method. An Illumina HiSeq 2500 instrument was used to generate 75 base pair paired-end reads, which were aligned to the hg38 reference genome using STAR. Differential expression analysis was performed using DESeq2. Overall design: mRNA profiles obtained via RNA-Seq for whole blood samples from ARDS patients with and without BMT

Publication Title

Whole blood RNA sequencing reveals a unique transcriptomic profile in patients with ARDS following hematopoietic stem cell transplantation.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon GSE64914
Expression data from chimeric antigen receptor transduced (CAR) human CD4+ T cells during expansion
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

In this data set we include expression data from human CD4+ T cells isolated on day 0, 6, 11 and 24 follow anti-CD3/anti-CD28 magnetic bead stimulation and chimeric antigen receptor transduction.

Publication Title

Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5851
Phase II exploratory pharmacogenomics study of cetuximab monotherapy in patients with advanced metastatic CRC
  • organism-icon Homo sapiens
  • sample-icon 80 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Patients with metastatic colorectal cancer were enrolled for treatment with cetuximab monotherapy. Transcriptional profiling was conducted on RNA from pre-treatment metastatic site biopsies to identify genes whose expression correlates with best clinical responses.

Publication Title

Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP109298
MED12cKO heart ventricles from male mice [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The Mediator complex regulates gene transcription by linking basal transcriptional machinery with DNA-bound transcription factors. The activity of the Mediator complex is mainly controlled by a kinase submodule that is comprised of four proteins, including MED12. Although ubiquitously expressed, Mediator subunits can differentially regulate gene expression in a tissue-specific manner. Here, we report that MED12 is required for normal cardiac function such that mice with conditional cardiac-specific deletion of MED12 display progressive dilated cardiomyopathy. Loss of MED12 perturbs expression of calcium handling genes in the heart, consequently altering calcium cycling in cardiomyocytes and disrupting cardiac electrical activity. We identified transcription factors that regulate expression of calcium-handling genes that are downregulated in the heart in the absence of MED12, and found that MED12 localizes to transcription factor consensus sequences within calcium handling genes. We showed that MED12 interacts with one such transcription factor, MEF2, in cardiomyocytes, and that MED12 and MEF2 co-occupy promoters of calcium handling genes. Furthermore, we demonstrated that MED12 enhances MEF2 transcriptional activity and overexpression of both increases expression of calcium handling genes in cardiomyocytes. Our data support a role for MED12 as a coordinator of transcription through MEF2 and other transcription factors. We conclude that MED12 is a regulator of a network of calcium handling genes, consequently “mediating” contractility in the mammalian heart. Overall design: Ventricle mRNA profiles of 1-day old control (CTL, CreNEG) and cardiac-specific Med12 knockout mice (Med12cKO, CrePOS) were generated by deep sequencing, in triplicate, using Illumina.

Publication Title

MED12 regulates a transcriptional network of calcium-handling genes in the heart.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact