refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 423 results
Sort by

Filters

Technology

Platform

accession-icon GSE16768
Transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE16656
Transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblatoma SH-SY5Y cells: 24h
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The deposition of unconjugated bilirubin (UCB) in selected regions of the brain results in irreversible neuronal damage, or Bilirubin Encephalopathy (BE). Although UCB impairs a large number of cellular functions, the basic mechanisms of neurotoxicity have not yet been fully clarified. While cells can accumulate UCB by passive diffusion, cell protection may involve multiple mechanisms including the extrusion of the pigment as well as pro-survival homeostatic responses that are still unknown. The effects of UCB treatment to SH-SY5Y neuroblastoma cell line were examined by high density oligonucleotide microarrays. 230 genes were induced after 24 hours. A Gene Ontology (GO) analysis showed that a large group of UCB-induced genes were components of the ER stress response. Independent experimental validation of molecular events crucial for the ER stress response is presented. The results show that UCB exposure induces ER stress response as major intracellular homeostatic response in neuroblastoma cells in vitro. Our finding may provide valuable information for new therapeutic strategies in the treatment of BE.

Publication Title

A transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16767
Transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells: 4h
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The deposition of unconjugated bilirubin (UCB) in selected regions of the brain results in irreversible neuronal damage, or Bilirubin Encephalopathy (BE). Although UCB impairs a large number of cellular functions, the basic mechanisms of neurotoxicity have not yet been fully clarified. While cells can accumulate UCB by passive diffusion, cell protection may involve multiple mechanisms including the extrusion of the pigment as well as pro-survival homeostatic responses that are still unknown. The effects of UCB treatment to SH-SY5Y neuroblastoma cell line were examined by high-density oligonucleotide microarrays. 230 genes were induced after 24 hours. A Gene Ontology (GO) analysis showed that a large group of UCB-induced genes were components of the ER stress response. Independent experimental validation of molecular events crucial for the ER stress response is presented. The results show that UCB exposure induces the ER stress response as a major intracellular homeostatic response in neuroblastoma cells in vitro. Our finding may provide valuable information for new therapeutic strategies in the treatment of BE.

Publication Title

A transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE16766
Transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells: 1h
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The deposition of unconjugated bilirubin (UCB) in selected regions of the brain results in irreversible neuronal damage, or Bilirubin Encephalopathy (BE). Although UCB impairs a large number of cellular functions, the basic mechanisms of neurotoxicity have not yet been fully clarified. While cells can accumulate UCB by passive diffusion, cell protection may involve multiple mechanisms including the extrusion of the pigment as well as pro-survival homeostatic responses that are still unknown. The effects of UCB treatment to SH-SY5Y neuroblastoma cell line were examined by high-density oligonucleotide microarrays. 230 genes were induced after 24 hours. A Gene Ontology (GO) analysis showed that a large group of UCB-induced genes were components of the ER stress response. Independent experimental validation of molecular events crucial for the ER stress response is presented. The results show that UCB exposure induces the ER stress response as a major intracellular homeostatic response in neuroblastoma cells in vitro. Our finding may provide valuable information for new therapeutic strategies in the treatment of BE.

Publication Title

A transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE69079
Expression data of sleeping, waking, and sleep deprived adult heterozygous aldh1l1 eGFP-L10a mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping versus awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is because the previous studies pooled transcripts from all brain cells, including neurons and glia.

Publication Title

Transcriptome profiling of sleeping, waking, and sleep deprived adult heterozygous Aldh1L1 - eGFP-L10a mice.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE48369
Expression data of sleeping, waking, and sleep deprived in adult heterozygous Cnp eGFP-L10a mice
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping versus awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is because the previous studies pooled transcripts from all brain cells, including neurons and glia.

Publication Title

Effects of sleep and wake on oligodendrocytes and their precursors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE139859
Molecular events controlling cessation of trunk neural crest migration and onset of differentiation
  • organism-icon Gallus gallus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Neural crest cells migrate extensively in vertebrate embryos to populate diverse derivatives including ganglia of the peripheral nervous system.

Publication Title

Molecular Events Controlling Cessation of Trunk Neural Crest Migration and Onset of Differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE67838
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE67826
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Treatment of leukemia cells with 1,25-dihydroxyvitamin D3 may overcome their differentiation block and lead to the transition from myeloblasts to monocytes. To identify microRNA-mRNA networks relevant for myeloid differentiation, we profiled the expression of mRNAs and microRNAs associated to the low- and high-density ribosomal fractions in leukemic cells and in their differentiated monocytic counterpart. Intersection between mRNAs shifted across the fractions after treatment with putative target genes of modulated microRNAs showed a series of molecular networks relevant for the monocyte cell fate determination

Publication Title

Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE139380
Aberrant expression of RSK1 characterizes high-grade gliomas with immune infiltration
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

The p90 ribosomal S6 kinase (RSK) family, a downstream target of Ras/extracellular signal-regulated kinase (ERK) signaling, can mediate cross-talk with the mammalian target of rapamycin complex 1 (mTORC1) pathway. As RSK connects two oncogenic pathways in gliomas, we investigated the protein levels of the RSK isoforms RSK1-4 in non-tumoral brain (NB) and grade I-IV gliomas. RSK4 expression was not detected in any brain tissues, whereas RSK3 expression was very low, with GBMs demonstrating the lowest RSK3 protein levels. When compared to NB or low-grade gliomas (LGG), a group of glioblastomas (RSK1hi) that excluded long-survivor cases expressed higher levels of RSK1. No difference was observed in RSK2 median-expression levels among NB and gliomas; however, high levels of RSK2 in glioblastomas (GBM) were associated with worse survival. RSK1hi and, to a lesser extent, RSK2hi GBMs, showed higher levels of phosphorylated RSK, which indicates RSK activation. Transcriptome analysis indicated that most RSK1hi GBMs belonged to the mesenchymal subtype, and RSK1 expression strongly correlated with gene expression signature of immune infiltrates, in particular of activated-natural killer cells and M2 macrophages. In an independent cohort, we confirmed that RSK1hi GBMs exclude long-survivors, and RSK1 expression was associated with high protein levels of the mesenchymal subtype marker LAPTM5, as well as with high expression of CD68, which indicated the presence of infiltrating immune cells. An RSK1 signature was obtained based on differentially expressed mRNAs and validated in public glioma datasets. Enrichment of RSK1 signature followed glioma progression, recapitulating RSK1 protein expression, and was associated with worse survival not only in GBM but also in LGG. In conclusion, both RSK1 and RSK2 associate with glioma malignity, but displaying isoform-specific peculiarities. The progression-dependent expression and association with immune infiltration, suggests RSK1 as a potential progression marker and therapeutic target for gliomas.

Publication Title

Aberrant expression of RSK1 characterizes high-grade gliomas with immune infiltration.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact