refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 827 results
Sort by

Filters

Technology

Platform

accession-icon GSE10849
Caveolin-1 Knockout Hearts
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Hearts Lacking Caveolin-1 Develop Hypertrophy with Normal Cardiac Substrate Metabolism

Publication Title

Hearts lacking caveolin-1 develop hypertrophy with normal cardiac substrate metabolism.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE56918
The ER-Associated Degradation Adapter Protein Sel1L Regulates Triglyceride Metabolism via Lipoprotein Lipase
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Sel1L is an adaptor protein for the E3 ligase Hrd1 in the endoplasmic reticulum-associated degradation (ERAD), but its physiological role in a cell-type-specific manner remains unclear. Here we show that mice with adipocyte-specific Sel1L deficiency are resistant to diet-induced obesity and exhibit postprandial hypertriglyceridemia. Mechanistically, our data demonstrate a critical requirement of Sel1L for the secretion of lipoprotein lipase (LPL), independently of its role in Hrd1-mediated ERAD and ER homeostasis. Further biochemical analyses revealed that Sel1L physically interacts and stabilizes the LPL maturation complex consisted of LPL and lipase-maturation factor 1 (LMF1). In the absence of Sel1L, LPL is retained in the ER and prone to the formation of protein aggregates, which are degraded by autophagy-mediated degradation. The Sel1L-mediated control of LPL secretion is seen in other LPL-expressing cell types as well such as cardiac muscle and macrophages. Thus, our study reports a novel role of Sel1L in LPL secretion and systemic lipid metabolism.

Publication Title

The ER-associated degradation adaptor protein Sel1L regulates LPL secretion and lipid metabolism.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE19083
Microarray analysis of mediastinal lymph node of pigs naturally affected by postweaning multisystemic wasting syndrome
  • organism-icon Sus scrofa
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Postweaning multisystemic wasting syndrome (PMWS) is one of the pig diseases with major economic impact worldwide. Clinical, pathologic and some immunologic aspects of this disease are well-known, but the molecular mechanisms underlying pathogenic mechanisms of the disease are still poorly understood. The objective of the present study was to investigate the global changes in gene expression in the mediastinal lymph nodes from pigs naturally affected by PMWS and healthy counterparts, using the Affymetrix Porcine Genechip. This is the first study on gene expression in pigs naturally affected by PMWS. The present results allowed identifying potential mechanisms underlying the inflammation, lymphocyte depletion in lymphoid tissues and immune suppression, which are key features of PMWS.

Publication Title

Microarray analysis of mediastinal lymph node of pigs naturally affected by postweaning multisystemic wasting syndrome.

Sample Metadata Fields

Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE38088
Expression data from human induced pluripotent stem cell-derived teratomas and embryoid bodies
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The tumorigenicity of human pluripotent stem cells (hPSCs) is a major safety concern for their application in regenerative medicine. Here we identify the tight-junction protein Claudin-6 as a specific cell surface marker of hPSCs that can be used to selectively remove Claudin-6-positive cells from mixed cultures. We show that Claudin-6 is absent in adult tissues but highly expressed in undifferentiated cells, where it is dispensable for hPSC survival and self-renewal. We use three different strategies to remove Claudin-6-positive cells from mixed populations: an antibody against Claudin-6; a cytotoxin-conjugated antibody that selectively targets undifferentiated cells; and clostridium perfringens enterotoxin, a toxin that binds several Claudins, including Claudin-6, and efficiently kills undifferentiated cells, thus eliminating the tumorigenic potential of hPSC-containing cultures. This work provides a proof of concept for the use of Claudin-6 to eliminate residual undifferentiated hPSCs from culture, highlighting a strategy that may increase the safety of hPSC-based cell therapies.

Publication Title

Immunologic and chemical targeting of the tight-junction protein Claudin-6 eliminates tumorigenic human pluripotent stem cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE57909
Expression data from human pluripotent stem cells treated with PluriSIn#2
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Pluripotent-specific inhibitors (PluriSIns) make a powerful tool for studying the mechanisms that control the survival of human pluripotent stem cells (hPSCs). Here we characterize PluriSIn#2 as a novel selective indirect inhibitor of topoisomerase II alpha (TOP2A). We find that TOP2A is uniquely expressed in undifferentiated hPSCs, and that its inhibition results in their rapid cell death. These findings reveal a dependency of hPSCs on the activity of TOP2A, which can be harnessed for their selective elimination from culture.

Publication Title

Brief reports: Controlling the survival of human pluripotent stem cells by small molecule-based targeting of topoisomerase II alpha.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE93188
Transcriptomic fingerprints of C. elegans exposed to citrate coated superparamagnetic iron oxide nanoparticles (C-SPIONs) and to superparamagnetic iron oxide nanoparticles coated with a monolayer of bovine serum albumin (BSA-SPIONs)
  • organism-icon Caenorhabditis elegans
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Gene 1.0 ST Array (elegene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Toxicogenomics of iron oxide nanoparticles in the nematode C. elegans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE93187
Transcriptomic fingerprints of C. elegans exposed to citrate coated superparamagnetic iron oxide nanoparticles (C-SPIONs)
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Gene 1.0 ST Array (elegene10st)

Description

Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are currently being investigated for a range of biomedical applications. Their use have been related with different cytotoxic mechanisms including the generation of oxidative stress and the induction of metal detoxification pathways, among others. We have investigated the molecular mechanisms responsive to in-house fabricated citrate coated SPIONs (C-SPIONs) in the nematode C. elegans to compare in vivo findings with previous in vitro studies. C-SPIONs (500 g/ml) affected the transcriptional response of signal transduction cascades (i.e. TFG-beta), protein processing in the endoplasmic reticulum, and RNA transport, among other biological processes. They also triggered a lysosomal response, indicating a relevant biological role of this cellular compartment in the response to this nanoparticle treatment in C. elegans. Interestingly, other pathways frequently linked to nanotoxicity like oxidative stress or apoptosis were not identified as significantly affected in this genome-wide in vivo study despite the high dose of exposure.

Publication Title

Toxicogenomics of iron oxide nanoparticles in the nematode C. elegans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE93186
Transcriptomic fingerprints of C. elegans exposed to superparamagnetic iron oxide nanoparticles coated with a monolayer of bovine serum albumin (BSA-SPIONs)
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Gene 1.0 ST Array (elegene10st)

Description

Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are currently being investigated for a range of biomedical applications. Their use have been related with different cytotoxic mechanisms including the generation of oxidative stress and the induction of metal detoxification pathways, among others. Different NP coatings are being explored, among them albumin which has been applied in some drugs delivery systems. We have investigated the molecular mechanisms responsive to in-house fabricated SPIONs coated with bovine serum albumin (BSA-SPIONs) in the nematode C. elegans to compare in vivo findings with previous in vitro studies. BSA-SPIONs (500 g/ml) affected the transcriptional response of glycan metabolic pathways related to innate immune response, xenobiotics degradation, and triggered a lysosomal response, indicating a relevant biological role of this cellular compartment in the response to this nanoparticle treatment in C. elegans. Remarkably, key biological functions such as apoptosis or protein processing were not affected with significance despite the high dose of exposure.

Publication Title

Toxicogenomics of iron oxide nanoparticles in the nematode C. elegans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38061
Expression data from HCT116 colorectal cancer cells.
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To define the contribution of CDK8 versus CDK19 to gene expression control, we performed a series of microarray assays for cells where each kinase was stably knocked down.

Publication Title

HIF1A employs CDK8-mediator to stimulate RNAPII elongation in response to hypoxia.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE31774
Effect of loss of function of Gal11/Med15 and Med3 from the Mediator tail module in budding yeast
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Gene expression was compared for wild type yeast (BY4741) and yeast lacking Gal11/Med15 and Med3, or from a gal11-myc med3 strain. The gal11-myc allele shows a partial loss of function when combined with med3. Expression was analyzed for yeast grown in YPD as well as in CSM.

Publication Title

Distinct role of Mediator tail module in regulation of SAGA-dependent, TATA-containing genes in yeast.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact