We report the gene expression profiles of germinal center B cells obtained by FACS analyses of normal human lymph nodes.
Identification and functional relevance of de novo DNA methylation in cancerous B-cell populations.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
DNA methylation fingerprint of neuroblastoma reveals new biological and clinical insights.
Specimen part
View SamplesDNA methylation changes in neuroblastoma, a clinically-heterogeneous pediatric tumor, have been described essentially in promoter regions. We analyzed the DNA methylome of neuroblastoma using high-density microarrays and observed differential methylation not only in promoters but also in intragenic and intergenic regions at both CpG and non-CpG sites. These epigenetic changes showed a non-random distribution relative functional chromatin domains, and targeted development and cancer-related genes, relevant for neuroblastoma pathogenesis. CCND1, a gene overexpressed in neuroblastoma, showed hypomethylation of gene-body and upstream regulatory regions. Furthermore, tumors with diverse clinical-risk showed clear differences affecting CpG and, remarkably, non-CpG sites. Non-CpG methylation was present in clinically-favorable tumors and affected genes such as ALK, where non-CpG methylation correlated with low gene expression. Finally, we identified CpG and non-CpG methylation signatures which correlated with patients age at time-points relevant for neuroblastoma clinical behavior, and targeted genes related to neural development and neural crest regulatory network
DNA methylation fingerprint of neuroblastoma reveals new biological and clinical insights.
Specimen part
View SamplesTo identify genes implicated in metastatic colonization of the liver in colorectal cancer, we collected pairs of primary tumors and hepatic metastases before chemotherapy in 13 patients. We compared mRNA expression in the pairs of patients to identify genes deregulated during metastatic evolution. We then validated the identified genes using data obtained by different groups. The 33-gene signature was able to classify 87% of hepatic metastases, 98% of primary tumors, 97% of normal colon mucosa, and 95% of normal liver tissues in six datasets obtained using five different microarray platforms. The identified genes are specific to colon cancer and hepatic metastases since other metastatic locations and hepatic metastases originating from breast cancer were not classified by the signature. Gene Ontology term analysis showed that 50% of the genes are implicated in extracellular matrix remodeling, and more precisely in cell adhesion, extracellular matrix organization and angiogenesis. Because of the high efficiency of the signature to classify colon hepatic metastases, the identified genes represent promising targets to develop new therapies that will specifically affect hepatic metastasis microenvironment.
Specific extracellular matrix remodeling signature of colon hepatic metastases.
Sex, Age, Specimen part, Subject
View SamplesFacioscapulohumeral muscular dystrophy (FSHD) is a progressive neuromuscular disorder caused by contractions of repetitive elements within the macrosatellite D4Z4 on chromosome 4q35. In order to develop mRNA-based biomarkers of affected muscles, we used GeneChip Gene 1.0 ST arrays for global analysis of gene expression in muscle biopsy specimens obtained from FSHD subjects and their unaffected first degree relatives.
Transcriptional profiling in facioscapulohumeral muscular dystrophy to identify candidate biomarkers.
Sex, Specimen part, Disease, Disease stage, Subject
View SamplesSingle cell RNA sequencing (scRNA-seq) technology has undergone rapid development in recent years and brings new challenges in data processing and analysis. This has led to an explosion of tailored analysis methods for scRNA-seq to address various biological questions. However, the current lack of gold-standard benchmarking datasets makes it difficult for researchers to evaluate the performance of the many methods available in a systematic manner. Here, we designed and generated a cross-platform benchmark dataset that has in-built truth in various forms and varying levels of biological noise. We used this dataset to compare different protocols and data analysis methods. We found that different protocols have different data quality and ERCC spike-in works independently to endogenous RNA. We found significant differences in the results from the methods compared and we associated the results with data characteristics to identify methods that perform well in different situations. Our dataset and analysis provide a valuable resource for algorithm selection in different biological settings. Overall design: our experiment utilized the 3 human lung adenocarcinoma cell lines H2228, H1975 and HCC827. The experiment included mixtures of RNA and single cells from these cell lines. For the single cell designs, the three cell lines were mixed equally and processed by 10X chromium, Drop-seq and CEL-seq2, referred to as sc_10X, sc_Drop-seq and sc_CEL-seq2 respectively in analysis that follows. For the mixture designs, we used plate-based protocols to mix and dilute samples in 2 different ways. 9 cell mixtures from the 3 cell lines were sorted in different combinations in the cell mixture experiment and data were generated by CEL-seq2, the material after pooling from 384 wells were subsampled in either 1/9 or 1/3 to simulate cells of different sizes, with different PCR product clean up ratios ranging from 0.7 to 0.9, referred to as cellmix1 to cellmix4. For the cell mixture experiment, we also sorted wells with 10 times more cells (90 cells) to provide a pseudo bulk reference for each mixture (referred to as cellmix5). Distinct RNA mixtures which were diluted down to create single cell equivalents (ranging from 3.75, 7.5, 15 to 30 pg per well) were generated using CEL-seq2 and SORT-seq (referred to as RNAmix_CEL-seq2 and RNAmix_Sort-seq. This is the 9 cell mixture dataset.
scPipe: A flexible R/Bioconductor preprocessing pipeline for single-cell RNA-sequencing data.
Specimen part, Subject
View SamplesSingle cell RNA sequencing (scRNA-seq) technology has undergone rapid development in recent years and brings new challenges in data processing and analysis. This has led to an explosion of tailored analysis methods for scRNA-seq to address various biological questions. However, the current lack of gold-standard benchmarking datasets makes it difficult for researchers to evaluate the performance of the many methods available in a systematic manner. Here, we designed and generated a cross-platform benchmark dataset that has in-built truth in various forms and varying levels of biological noise. We used this dataset to compare different protocols and data analysis methods. We found that different protocols have different data quality and ERCC spike-in works independently to endogenous RNA. We found significant differences in the results from the methods compared and we associated the results with data characteristics to identify methods that perform well in different situations. Our dataset and analysis provide a valuable resource for algorithm selection in different biological settings. Overall design: our experiment utilized the 5 human lung adenocarcinoma cell lines H2228, H1975, A549, H838 and HCC827. For the single cell designs, the five cell lines were mixed equally and processed by 10X chromium and CEL-seq2, referred to as sc_10X_5cl, and sc_CEL-seq2_5cl respectively in analysis that follows. For CEL-seq2, three plates were sorted and processed.
scPipe: A flexible R/Bioconductor preprocessing pipeline for single-cell RNA-sequencing data.
Subject
View SamplesSingle cell RNA sequencing (scRNA-seq) technology has undergone rapid development in recent years and brings new challenges in data processing and analysis. This has led to an explosion of tailored analysis methods for scRNA-seq to address various biological questions. However, the current lack of gold-standard benchmarking datasets makes it difficult for researchers to evaluate the performance of the many methods available in a systematic manner. Here, we designed and generated a cross-platform benchmark dataset that has in-built truth in various forms and varying levels of biological noise. We used this dataset to compare different protocols and data analysis methods. We found that different protocols have different data quality and ERCC spike-in works independently to endogenous RNA. We found significant differences in the results from the methods compared and we associated the results with data characteristics to identify methods that perform well in different situations. Our dataset and analysis provide a valuable resource for algorithm selection in different biological settings. Overall design: our experiment utilized the 3 human lung adenocarcinoma cell lines H2228, H1975 and HCC827. The experiment included mixtures of RNA and single cells from these cell lines. For the single cell designs, the three cell lines were mixed equally and processed by 10X chromium, Drop-seq and CEL-seq2, referred to as sc_10X, sc_Drop-seq and sc_CEL-seq2 respectively in analysis that follows. For the mixture designs, we used plate-based protocols to mix and dilute samples in 2 different ways. 9 cell mixtures from the 3 cell lines were sorted in different combinations in the cell mixture experiment and data were generated by CEL-seq2, the material after pooling from 384 wells were subsampled in either 1/9 or 1/3 to simulate cells of different sizes, with different PCR product clean up ratios ranging from 0.7 to 0.9, referred to as cellmix1 to cellmix4. For the cell mixture experiment, we also sorted wells with 10 times more cells (90 cells) to provide a pseudo bulk reference for each mixture (referred to as cellmix5). Distinct RNA mixtures which were diluted down to create single cell equivalents (ranging from 3.75, 7.5, 15 to 30 pg per well) were generated using CEL-seq2 and SORT-seq (referred to as RNAmix_CEL-seq2 and RNAmix_Sort-seq. This is the RNAmix_CEL-seq2 dataset.
scPipe: A flexible R/Bioconductor preprocessing pipeline for single-cell RNA-sequencing data.
Specimen part, Subject
View SamplesSingle cell RNA sequencing (scRNA-seq) technology has undergone rapid development in recent years and brings new challenges in data processing and analysis. This has led to an explosion of tailored analysis methods for scRNA-seq to address various biological questions. However, the current lack of gold-standard benchmarking datasets makes it difficult for researchers to evaluate the performance of the many methods available in a systematic manner. Here, we designed and generated a cross-platform benchmark dataset that has in-built truth in various forms and varying levels of biological noise. We used this dataset to compare different protocols and data analysis methods. We found that different protocols have different data quality and ERCC spike-in works independently to endogenous RNA. We found significant differences in the results from the methods compared and we associated the results with data characteristics to identify methods that perform well in different situations. Our dataset and analysis provide a valuable resource for algorithm selection in different biological settings. Overall design: our experiment utilized the 3 human lung adenocarcinoma cell lines H2228, H1975 and HCC827. The experiment included mixtures of RNA and single cells from these cell lines. For the single cell designs, the three cell lines were mixed equally and processed by 10X chromium, Drop-seq and CEL-seq2, referred to as sc_10X, sc_Drop-seq and sc_CEL-seq2 respectively in analysis that follows. For the mixture designs, we used plate-based protocols to mix and dilute samples in 2 different ways. 9 cell mixtures from the 3 cell lines were sorted in different combinations in the cell mixture experiment and data were generated by CEL-seq2, the material after pooling from 384 wells were subsampled in either 1/9 or 1/3 to simulate cells of different sizes, with different PCR product clean up ratios ranging from 0.7 to 0.9, referred to as cellmix1 to cellmix4. For the cell mixture experiment, we also sorted wells with 10 times more cells (90 cells) to provide a pseudo bulk reference for each mixture (referred to as cellmix5). Distinct RNA mixtures which were diluted down to create single cell equivalents (ranging from 3.75, 7.5, 15 to 30 pg per well) were generated using CEL-seq2 and SORT-seq (referred to as RNAmix_CEL-seq2 and RNAmix_Sort-seq. This is the RNAmix_CEL-seq2 dataset.
scPipe: A flexible R/Bioconductor preprocessing pipeline for single-cell RNA-sequencing data.
Specimen part, Subject
View SamplesSingle cell RNA sequencing (scRNA-seq) technology has undergone rapid development in recent years and brings new challenges in data processing and analysis. This has led to an explosion of tailored analysis methods for scRNA-seq to address various biological questions. However, the current lack of gold-standard benchmarking datasets makes it difficult for researchers to evaluate the performance of the many methods available in a systematic manner. Here, we designed and generated a cross-platform benchmark dataset that has in-built truth in various forms and varying levels of biological noise. We used this dataset to compare different protocols and data analysis methods. We found that different protocols have different data quality and ERCC spike-in works independently to endogenous RNA. We found significant differences in the results from the methods compared and we associated the results with data characteristics to identify methods that perform well in different situations. Our dataset and analysis provide a valuable resource for algorithm selection in different biological settings. Overall design: our experiment utilized the 3 human lung adenocarcinoma cell lines H2228, H1975 and HCC827. The experiment included mixtures of RNA and single cells from these cell lines. For the single cell designs, the three cell lines were mixed equally and processed by 10X chromium, Drop-seq and CEL-seq2, referred to as sc_10X, sc_Drop-seq and sc_CEL-seq2 respectively in analysis that follows. For the mixture designs, we used plate-based protocols to mix and dilute samples in 2 different ways. 9 cell mixtures from the 3 cell lines were sorted in different combinations in the cell mixture experiment and data were generated by CEL-seq2, the material after pooling from 384 wells were subsampled in either 1/9 or 1/3 to simulate cells of different sizes, with different PCR product clean up ratios ranging from 0.7 to 0.9, referred to as cellmix1 to cellmix4. For the cell mixture experiment, we also sorted wells with 10 times more cells (90 cells) to provide a pseudo bulk reference for each mixture (referred to as cellmix5). Distinct RNA mixtures which were diluted down to create single cell equivalents (ranging from 3.75, 7.5, 15 to 30 pg per well) were generated using CEL-seq2 and SORT-seq (referred to as RNAmix_CEL-seq2 and RNAmix_Sort-seq.
scPipe: A flexible R/Bioconductor preprocessing pipeline for single-cell RNA-sequencing data.
Specimen part, Subject
View Samples