refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 96 results
Sort by

Filters

Technology

Platform

accession-icon GSE28095
Genetic perturbations direct the development of distinct brain tumor types from postnatal neural stem/progenitor cells
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Primary brain tumors are classified and treated based on their histological features, however the factors which specify these tumor types remain largely unknown. We demonstrate that the over-expression of HRAS (V12) and MYC alone or in combination directs the development of glioma, CNS PNET, and atypical teratoid/rhabdoid (AT/RT)-like tumors from postnatal murine p53-deficient neural stem/progenitor cells.

Publication Title

Definition of genetic events directing the development of distinct types of brain tumors from postnatal neural stem/progenitor cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP061772
SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation [cell line_RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

SMARCB1 (SNF5/INI1/BAF47), a core subunit of the SWI/SNF (BAF) chromatin remodeling complex, is inactivated in nearly all pediatric rhabdoid tumors. These aggressive cancers are among the most genomically stable, suggesting an epigenetic mechanism by which SMARCB1 loss drives transformation. Here, we show that despite indistinguishable mutational landscapes, human RTs show distinct enhancer H3K27ac signatures, which reveal remnants of differentiation programs. We show that SMARCB1 is required for the integrity of SWI/SNF complexes and that its loss alters enhancer targeting markedly impairing SWI/SNF binding to typical enhancers, particularly those required for differentiation, while maintaining SWI/SNF binding at super-enhancers. We show that these retained super-enhancers are essential for rhabdoid tumor survival, including some that are shared across all subtypes, such as SPRY1, and other lineage-specific super-enhancers like SOX2 in brain-derived RTs. Taken together, our findings reveal a novel chromatin-based epigenetic mechanism underlying the tumor suppressive activity of SMARCB1. Overall design: RNA-seq in six Smarcb1 deficient rhabdoid tumor cell lines, before and after Smarcb1 re-expression.

Publication Title

SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP061769
SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation [primary tissue_RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

SMARCB1 (SNF5/INI1/BAF47), a core subunit of the SWI/SNF (BAF) chromatin remodeling complex, is inactivated in nearly all pediatric rhabdoid tumors. These aggressive cancers are among the most genomically stable, suggesting an epigenetic mechanism by which SMARCB1 loss drives transformation. Here, we show that despite indistinguishable mutational landscapes, human RTs show distinct enhancer H3K27ac signatures, which reveal remnants of differentiation programs. We show that SMARCB1 is required for the integrity of SWI/SNF complexes and that its loss alters enhancer targeting markedly impairing SWI/SNF binding to typical enhancers, particularly those required for differentiation, while maintaining SWI/SNF binding at super-enhancers. We show that these retained super-enhancers are essential for rhabdoid tumor survival, including some that are shared across all subtypes, such as SPRY1, and other lineage-specific super-enhancers like SOX2 in brain-derived RTs. Taken together, our findings reveal a novel chromatin-based epigenetic mechanism underlying the tumor suppressive activity of SMARCB1. Overall design: RNA-seq for three primary Rhabdoid tumor samples

Publication Title

SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE28084
Genome-wide Localization of SREBP-2 in Hepatic Chromatin Predicts a Novel Role in Autophagy
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide localization of SREBP-2 in hepatic chromatin predicts a role in autophagy.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE28083
Expression data from CH/LE Mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We are using genome-wide ChIP-seq with isoform-specific antibodies and chromatin from select tissues of mice challenged with different dietary conditions that enrich for specific SREBPs.

Publication Title

Genome-wide localization of SREBP-2 in hepatic chromatin predicts a role in autophagy.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE51997
T helper lymphocyte- and monocyte-specific type I interferon (IFN) signatures in autoimmunity and viral infection.
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This study demonstrates quantitative and qualitative differences between type I IFN signatures in autoimmunity and viral infection using purified CD4pos T cells and CD16pos- and CD16neg-monocyte subsets. We were able to discriminate between cell-specific viral response signatures and the pathogenically amplified IFN signatures observed in autoimmunity. The differences were of both a qualitative and quantitative nature, as the signatures in the patients with SLE were characterized by much more complexly compiled gene patterns with increased absolute gene expression levels.

Publication Title

Cell-specific type I IFN signatures in autoimmunity and viral infection: what makes the difference?

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE103382
Expresson of CD271 HIGH and LOW populations in melanoma cells during invasion
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Human engeneered skin carrying GFP positive melanoma cells was transplanted in immunocompromised rats.

Publication Title

low neurotrophin receptor CD271 regulates phenotype switching in melanoma.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE38351
The multifaceted balance of TNF-a and type I / II interferon responses in SLE and RA: how monocytes manage the impact of cytokines
  • organism-icon Homo sapiens
  • sample-icon 74 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Many cytokines are involved in the pathogenesis of autoimmune diseases and are recognized as relevant therapeutic targets to attenuate inflammation, such as TNF in RA and IFN/ in SLE. To relate the transcriptional imprinting of cytokines in a cell type-specific and disease-specific manner, we generated gene-expression profiles from peripheral monocytes of SLE and RA patients and compared them to in vitro-generated signatures induced by TNF, IFN2a and IFN. Monocytes from SLE and RA patients revealed disease-specific gene-expression profiles. In vitro-generated signatures induced by IFN2a and IFN showed similar profiles that only partially overlapped with those induced by TNF. Comparisons between disease-specific and in vitro-generated signatures identified cytokine-regulated genes in SLE and RA with qualitative and quantitative differences. The IFN-responses in SLE and RA were found to be regulated in a STAT1-dependent and STAT1-independent manner, respectively. Similarly, genes recognized as TNF-regulated were clearly distinguishable between RA and SLE patients. While the activity of SLE monocytes was mainly driven by IFN, the activity from RA monocytes showed a dominance of TNF that was characterized by STAT1 down-regulation. The responses to specific cytokines were revealed to be disease-dependent and reflected the interplay of cytokines within various inflammatory milieus. This study has demonstrated that monocytes from RA and SLE patients exhibit disease-specific gene-expression profiles, which can be molecularly dissected when compared to in vitro-generated cytokine signatures. The results suggest that an assessment of cytokine-response status in monocytes may be helpful for improvement of diagnosis and selection of the best cytokine target for therapeutic intervention.

Publication Title

The multifaceted balance of TNF-α and type I/II interferon responses in SLE and RA: how monocytes manage the impact of cytokines.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment, Subject

View Samples
accession-icon GSE53224
Gene expression data from Wilms tumor samples
  • organism-icon Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Wilms tumor (nephroblastoma) is a pediatric kidney tumor that arises from renal progenitor cells. Since the blastemal type is associated with adverse prognosis, we characterized such Wilms tumors by exome and transcriptome analysis. We detected novel, recurrent somatic mutations affecting the SIX1/2 SALL1 pathway implicated in kidney development, the DROSHA/DGCR8 microprocessor genes as well as alterations in MYCN and TP53, the latter being strongly associated with dismal outcome. The DROSHA mutations impair the RNase III domains, while DGCR8 exhibits stereotypic E518K mutations in the RNA binding domain - both may skew miRNA representation. SIX1 and SIX2 mutations affect a single hotspot (Q177R) in the homeodomain indicative of a dominant effect. In larger cohorts, these mutations cluster in blastemal and chemotherapy-induced regressive tumors that likely derive from blastemal cells and these are characterized by generally higher SIX1/2 expression. These findings broaden the spectrum of human cancer genes and may open new avenues for stratification and therapeutic leads for Wilms tumors.

Publication Title

Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE30126
Expression data from normal thymocytes, 24 day pre-tumor Dnmt3b-deficient thymocytes, Wild-Type Tumors, and Dnmt3b-deficient Tumors
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Dnmt3b is a DNA methytransferase which is an enzyme that methylated genomic DNA which contributes to genomic stability and transcriptional regulation.

Publication Title

Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact