refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 168 results
Sort by

Filters

Technology

Platform

accession-icon GSE27524
A functional liaison between E2F and the aberrant ETS oncogene EWS/FLI1 in Ewing's sarcoma
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Translocations of ETS transcription factors are driver mutations in diverse cancers. We investigated the genomic network of the ETS fusion EWS/FLI1 in Ewing's sarcoma (ESFT) as a model of ETS-driven tumorigenesis. ChIP-Seq and transcriptional analysis identified E2F3 as a principle co-factor of EWSFLI1 defining functionally distinct gene sets. While EWS/FLI1 binding independent of E2F3 predominantly associated with repressed differentiation genes, significant co-localization with E2F3 was discovered at proximal promoters of activated growth-related genes. Thus, EWS/FLI1 promotes oncogenesis by simultaneously perturbing differentiation state and augmenting the expression of genes co-regulated by E2F3. Integration of additional E2F3 and ERG localization data from prostate cancer containing TMPRSS2/ERG verified that the ETS-E2F module is also found in prostate cancer and may be of general relevance to ETS driven cancers.

Publication Title

Oncogenic ETS fusions deregulate E2F3 target genes in Ewing sarcoma and prostate cancer.

Sample Metadata Fields

Disease, Cell line, Treatment, Time

View Samples
accession-icon GSE11118
Expression data following mitogen stimulation from Jurkat Cell
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression analysis identified 27 of these 744 p300 and pol II associated genes as significantly increased (p 0.05) within the first hour following mitogen stimulation

Publication Title

Dynamic bookmarking of primary response genes by p300 and RNA polymerase II complexes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36598
Global transcriptional role of CtBP in breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide profiles of CtBP link metabolism with genome stability and epithelial reprogramming in breast cancer.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE36529
Expression data from CtBP knockdown MCF-7 cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

CtBP is a global co-repressor by serving as transcriptional factor in multiple pathways. CtBP functioned as transcriptional factor by recruiting other cofactors such as G9a, HDAC1 and PcG proteins. CtBP is found to be over enriched in several type of tumor samples. To dipict the role of CtBP in globally regulating gene expression, we applied gene microarray technology to find out what subgroups of genes are mainly affected.

Publication Title

Genome-wide profiles of CtBP link metabolism with genome stability and epithelial reprogramming in breast cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE12337
Transcriptomic analysis of PPARalpha-dependent alterations during cardiac hypertrophy
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Findings suggest that PPARalpha plays a decisive role in the development of hypertrophy, affecting the functional outcome of the heart. Unfortunately, information on the nature of PPARalpha-dependent processes in cardiac hypertrophy is fragmentary and incomplete.

Publication Title

Transcriptomic analysis of PPARalpha-dependent alterations during cardiac hypertrophy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33400
Mapping barley genes to chromosome arms by transcript profiling of wheat-barley ditelosomic chromosome addition lines
  • organism-icon Hordeum vulgare, Triticum aestivum
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Barley Genome Array (barley1)

Description

We utilized the Barley1 Affymetrix GeneChip for comparative transcript analysis of Betzes barley, Chinese Spring wheat, and Chinese SpringBetzes ditelosomic chromosome addition lines to physically map barley genes to their respective chromosome arm locations. We mapped barley genes to chromosome arms (1HS, 2HS, 2HL, 3HS, 3HL, 4HS, 4HL, 5HS, 5HL, 7HS, and 7HL) based on their transcript levels in the ditelosomic addition lines. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Hatice Bilgic. The equivalent experiment is BB55 at PLEXdb.]

Publication Title

Mapping barley genes to chromosome arms by transcript profiling of wheat-barley ditelosomic chromosome addition lines.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21060
Regulation of gene expression in murine liver by IL-6
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

STEAP4 is a plasma membrane metallo-reductase involved in the transport of iron and copper. Recently, STEAP4 was implicated in promoting insulin sensitivity by acting in white adipose tissue (WAT) to control the production of inflammatory cytokines such as IL-6. Indeed, the loss of STEAP4 expression in mice leads to increased production of inflammatory cytokines in visceral WAT and systemic insulin resistance. In this report, we demonstrate that in mouse liver STEAP4 is produced at significant levels and that STEAP4 transcription is induced by IL-6. We further demonstrate that the STEAP4 gene is a direct target of phosphorylated STAT3 in mouse liver. In addition, hepatic STEAP4 expression is regulated by feeding and fasting, and obesity leads to the induction of STEAP4 expression in the liver. Interestingly, the regulation of STEAP4 in both feeding and fasting and the obese state appears to require the transcription factor C/EBPalpha that may act in concert with STAT3 as they both bind to the proximal STEAP4 promoter in vivo. Taken together these data suggest the transcriptional regulation of hepatic STEAP4 may play a critical role in the response to nutritional and inflammatory stress and contribute to the protective effect of STEAP4 in vivo.

Publication Title

Regulation of hepatic six transmembrane epithelial antigen of prostate 4 (STEAP4) expression by STAT3 and CCAAT/enhancer-binding protein alpha.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE18038
Gene expression profiling of mesenchyme-derived cell populations in the human airways
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Mesenchyme-derived cells in the human airway wall including airway smooth muscle cells, fibroblasts and myofibroblasts are known to play important roles in airway remodeling. The lack of specific phenotypic markers makes it difficult to define these cell populations in primary cultures. The objectives of this study were to evaluate reported markers and to identify novel markers to define these cell types.

Publication Title

Can lineage-specific markers be identified to characterize mesenchyme-derived cell populations in the human airways?

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP041964
Effect of Rps5 heterozygous deletion on embryonic stem cells transcriptome
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Using wild-type and Rps5 heterozygous embryonic stem cells, we isolated RNA from polyribosomal fractions in order to get insights into transcriptional and translational defects of such deletion. Overall design: Input, monosomes and polysomes extracted RNA samples from wild-type and Rps5 heterozygous clones (undifferentiated and differentiated, total number of samples = 12), were subjected to sequencing.

Publication Title

Haploinsufficiency screen highlights two distinct groups of ribosomal protein genes essential for embryonic stem cell fate.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12289
Identifying Significant Temporal Variation in Time Course Microarray Data Without Replicates
  • organism-icon Rattus norvegicus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

An important component of time course microarray studies is the identification of genes that demonstrate significant time-dependent variation in their expression levels. Until recently available methods for performing such significance tests required replicates of individual time points. This paper describes a replicate-free method that was developed as part of a study of the estrous cycle in the rat mammary gland in which no replicate data was collected.

Publication Title

Identifying significant temporal variation in time course microarray data without replicates.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact