refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 18 results
Sort by

Filters

Technology

Platform

accession-icon GSE18142
Human-specific transcriptional regulation of CNS development genes by FOXP2
  • organism-icon Pan troglodytes, Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge IconSentrix HumanRef-8 v2 Expression BeadChip

Description

The signaling pathways orchestrating both the evolution and development of language in the human brain remain unknown. To date, the transcription factor FOXP2 is the only gene implicated in Mendelian forms of human speech and language dysfunction1,2. It has been proposed, that the amino acid composition in the human variant of FOXP2 has undergone accelerated evolution, and this change occurred around the time of language emergence in humans3,4. However, this remains controversial, and whether the acquisition of these amino acids in human FOXP2 has any functional consequence in human neurons remains untested. Here, we demonstrate that these two amino acids confer new functionality in terms of differential transcriptional regulation, and extend these observations to in vivo brain, showing that several of the differential FOXP2 targets significantly overlap with genes different between human and chimpanzee brain. We also identify novel relationships among the differentially expressed genes with additional critical regulators of neuronal development. These data provide support for the functional relevance of changes that occur on the human lineage by showing that the two amino acids unique to human FOXP2 can lead to significant differences in gene expression patterns across brain evolution, with direct consequences for human brain development and disease. Since FOXP2 has an important role in the use of language in humans, the identified targets may have a critical function in the development and evolution of language circuitry in humans.

Publication Title

Human-specific transcriptional regulation of CNS development genes by FOXP2.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE16405
Transcriptional changes in the absence of nth-1, xpa-1 and nth-1;xpa-1
  • organism-icon Caenorhabditis elegans
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Background: The ability of an organism to repair damages to DNA is inextricably linked to aging and cancer. We have characterized and compared the transcriptome of C. elegans mutants deficient in DNA base excision repair, nucleotide excision repair or both to elucidate the transcriptional changes incurred by the reduction of these repair pathways.

Publication Title

A two-tiered compensatory response to loss of DNA repair modulates aging and stress response pathways.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP197300
RNA-seq data of PatchSeq dataset from Pvalb-Cre positive interneurons in the mouse hippocamus CA1 region
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

This study takes on the problem of bridging transcriptional data to neuronal phenotype and function by using publicly available datasets characterizing distinct neuronal populations based on gene expression, electrophysiology and morphology. In addition, a non-published PatchSeq dataset of Pvalb-cre positive cells in CA1 was used, which is the dataset submitted here. Taken together, these datasets were used to identify cross-cell type correlations between these data modalities. Detected correlations were classified as “class-driven” if they could be explained by differences between excitatory and inhibitory cell classes, or “non-class driven” if they could be explained by gradient like phenotypic differences within cell classes. Some genes whose relationships to electrophysiological or morphological properties were found to to be specific to either excitatory or inhibitory cell types. The Patch Seq data specifically allowed simultaneous single-cell characterization of gene expression and electrophysiology, showing that the gene-property correlations observed across cell types were further predictive of within-cell type heterogeneity. Overall design: Patchseq data was collected from single cells of the mouse hippocampus CA1 in order to investigate correlations between gene expression patterns and electrophysiological properties of various interneuron cell classes 19 individual cells Re-analysis details included in supplementary file readme.txt.

Publication Title

Transcriptomic correlates of electrophysiological and morphological diversity within and across excitatory and inhibitory neuron classes.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon E-ATMX-24
Transcription profiling of Arabidopsis Umkirch-1/Umkirch-3 hybrid plants grown at 23C and 16C in short day conditions
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Umkirch-1/Umkirch-3 hybrid plants and their parents were grown at 23SD and then shifted to 16SD for five days. 10 plants were pooled in each of three sample replicates.

Publication Title

Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30439
Exposure of cystic fibrosis bronchial epithelial cells (CFBE 41 o-) to Pseudomonas aeruginosa (PA01) biofilms
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In the clinical setting, mutations in the CFTR gene enhance the inflammatory response to P. aeruginosa (PA01) infection, but measurements of the inflammatory response to pathogen stimulation by isolated airway epithelia can yield variable results. In this series, we exposed CFBE41o- cells over-expressing F508/F508 CFTR and CFBE41o- cells rescued with wt-CFTR to P. aeruginosa biofilms. P. aeruginosa elicited a more robust increase in cytokine and chemokine expression (e.g., IL-8, CXCL2, CXCL3, CXCR4 and TNF-) in CFBE-wt-CFTR cells compared to CFBE-F508-CFTR cells. These results demonstrate that CFBE41o- cells complemented with wt-CFTR mount a more robust inflammatory response to P. aeruginosa than CFBE41o- F508/F508-CFTR cells.

Publication Title

Does the F508-CFTR mutation induce a proinflammatory response in human airway epithelial cells?

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP094724
Crispr-Cas9-mediated Aire gene editing in medullary thymic epithelial (mTEC) cells shows its role as a gene expression modulator during thymocyte adhesion
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The aim of this study is to evaluate the effect of Autoimmune regulator (Aire) gene disruption in a murine medullary thymic epithelial cells (mTEC 3.10 cell line) on the transcriptome of these cells during its adhesion with thymocytes. The mTEC-thymocyte adhesion is a crucial step for the negative selection of autoreactive thymocytes and prevention of autoimmune diseases. To generate Aire mutant cell clones, a total of 5x10^5 mTEC 3.10 cells were electro-transfected (Lonza Nucleofector) with CRISPR-Cas9 plasmid targeting the Aire Exon 3 (plasmid "all in one" encoding Aire Exon 3 gRNA + Cas9 + GFP, from Sigma-Aldrich). The GFP positive mTEC single cells were sorted by using a FACS Aria III cytometer and cells were cloned by expansion in culture. Sanger sequencing of PCR products from the Aire Exon 3 of these clones was used in order to evaluate the occurrence of indel mutations within the targeted Exon 3. The mTEC 3.10 clone E6 was identified and validated as a compound heterozygous Aire KO (Aire +/-). This clone features the Aire allele 1 that encodes a mutant Aire protein carring a neutral aminoacid substitution (A118P) and allele 2 encoding a truncated Aire protein. Wild type (WT) mTEC 3.10 cells or mTEC 3.10 clone E6 were cultured in the presence (or not) of thymocytes in order to establish cell adhesion. The total RNA preparations from WT or clone E6 mTEC cells (before or after mTEC- thymocyte co-cultures) were then sequenced through RNA-sequencing using a Illumina HiSeq 2500 instrument and the TruSeq Stranded mRNA Library Preparation kit resulting in about 50 million paired-end stranded specific 100 bp reads per sample. Sequencing reads were mapped to Mus musculus reference genome (mm10) using STAR v.2.5.0a. Read counts over transcripts were calculated using HTSeq v.0.6.1p2 based on a current UCSC annotation file for GRCm38/mm10 (Dec. 2011). Overall design: The mRNA profiles of mTEC 3.10 cells carring WT Aire (before or after co-culture with thymocytes) or heterozygous KO mTEC 3.10 cells (clone E6, Aire +/-) (before or after co-culture with thymocytes) were generated by sequencing, in duplicates, using a Illumina HiSeq 2500 instrument.

Publication Title

Aire Disruption Influences the Medullary Thymic Epithelial Cell Transcriptome and Interaction With Thymocytes.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE55733
Acute Effects Caused by the Rodent Non-Genotoxic Carcinogen Diethylhexylphthalate
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Acute effects caused by the non-genotoxic carcinogen and peroxisome proliferator (PP) diethylhexylphthalate (DEHP) in the mouse liver

Publication Title

Gene ontology mapping as an unbiased method for identifying molecular pathways and processes affected by toxicant exposure: application to acute effects caused by the rodent non-genotoxic carcinogen diethylhexylphthalate.

Sample Metadata Fields

Sex, Specimen part, Compound, Time

View Samples
accession-icon E-MEXP-1851
Transcription profiling of human hepatoblastoma identifies a 16 gene signature for invasive and metastatic blastomas
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Hepatoblastoma, the most common pediatric liver cancer, is tightly linked to excessive Wnt/�-catenin signaling. Microarray analysis identified two tumor subclasses resembling distinct phases of liver development, and a 16-gene signature discriminated invasive and metastatic hepatoblastomas, and predicted prognosis with high accuracy. <br></br>

Publication Title

Hepatic stem-like phenotype and interplay of Wnt/beta-catenin and Myc signaling in aggressive childhood liver cancer.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE31287
Gene expression from head and neck squamous cell carcinoma (SCCHN) cancer cells before and after figitumumab
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Patients with palliative SCCHN were treated with figitumumab, an IGF-1R inhibitor. This receptor plays an important role in cell growth, proliferation and differentiation and is often overexpressed in SCCHN. No significant clinical activity was observed in our study

Publication Title

Phase II study of figitumumab in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck: clinical activity and molecular response (GORTEC 2008-02).

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP058856
The apoptotic network and expression of BH3-containing proteins predict phenotypic response to BET bromodomain inhibitors
  • organism-icon Homo sapiens
  • sample-icon 88 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Small molecule inhibitors of the bromodomain and extraterminal (BET) family of proteins are in clinical trials for a variety of cancers, but patient selection strategies are limited. This is due in part to the heterogeneity of response following BET inhibition (BETi), which includes differentiation, senescence, and cell death in subsets of cancer cell lines. To elucidate the dominant features defining response to BETi, we carried out phenotypic and gene expression analysis of both treatment naïve cell lines and engineered tolerant lines. We found that both de novo and acquired tolerance to BET inhibition are driven by the robustness of the apoptotic response and that genetic or pharmacological manipulation of the apoptotic signaling network can modify the phenotypic response to BETi. We further identify that ordered expression of the apoptotic genes BCL2, BCL2L1, and BAD significantly predicts response to BETi. Our findings highlight the role of the apoptotic network in response to BETi, providing a molecular basis for patient stratification and combination therapies. Overall design: Gene expression profiling of A375 melanoma cells or NOMO-1 AML cells treated with DMSO or the BET inhibitor, CPI203. Also, gene expression profiling of the respective derived BETi-tolerant cells treated with DMSO or CPI203.

Publication Title

Preclinical Anticancer Efficacy of BET Bromodomain Inhibitors Is Determined by the Apoptotic Response.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact