refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 442 results
Sort by

Filters

Technology

Platform

accession-icon GSE103382
Expresson of CD271 HIGH and LOW populations in melanoma cells during invasion
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Human engeneered skin carrying GFP positive melanoma cells was transplanted in immunocompromised rats.

Publication Title

low neurotrophin receptor CD271 regulates phenotype switching in melanoma.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE63165
The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Increased activity of the epigenetic modifier EZH2 has been associated with different cancers. However, evidence for a functional role of EZH2 in tumourigenesis in vivo remains poor, in particular in metastasising solid cancers. Here we reveal central roles of EZH2 in promoting growth and metastasis of cutaneous melanoma. In a melanoma mouse model, conditional Ezh2 ablation as much as treatment with the preclinical Ezh2 inhibitor GSK503 stabilises the disease through inhibition of growth and virtually abolishes metastases formation without affecting normal melanocyte biology. Comparably, in human melanoma cells, EZH2 inactivation impairs proliferation and invasiveness, accompanied by re-expression of tumour suppressors connected to increased patient survival. These EZH2 target genes suppress melanoma growth and prevent EMT / metastasis in vivo revealing the dual function of EZH2 in promoting tumour progression. Thus, EZH2-mediated epigenetic repression is highly relevant especially during advanced melanomagenesis, which makes EZH2 a promising target for novel melanoma therapies.

Publication Title

The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE31786
Yy1 activity in mouse embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Yin Yang 1 extends the Myc-related transcription factors network in embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31784
Expression changes in Yy1 knock down mouse embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We have determined the global gene expression upon loss of function of the Yy1 transcription factor in mouse embryonic stem cells

Publication Title

Yin Yang 1 extends the Myc-related transcription factors network in embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP094719
Chromatin proteomics reveals novel combinatorial histone modification signatures that mark distinct subpopulations of macrophage enhancers [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HiSeq 2000

Description

The activity of enhancers and promoters fine-tunes the transcriptional program of mammalian cells through the recruitment and interplay between cell type-specific and ubiquitous transcription factors. Despite their key role in modulating transcription, the identification of enhancers is challenged by their limited sequence conservation and highly variable distance from target genes. Although enhancers are characterised by the strong enrichment of mono-methylation at lysine 4 of histone H3, mirrored by low tri-methylation at the same residue, a comprehensive list of enhancers-associated histone post-translational modifications (PTMs) is still lacking. We undertook a proteomics investigation, based on chromatin immunoprecipitation combined with mass spectrometry (MS), to identify histone marks specifically associated to cis-regulatory elements in macrophages, focusing on enhancers. We also profiled their plasticity during the transcriptional activation induced by an inflammatory stimulus. The proteomic analysis suggested novel PTM associations, which were validated by analysis of ChIP- and RNA-seq data, whose intersection revealed the existence of novel sub-populations of enhancers marked by specific signatures: the dual mark H3K4me1/K36me2 labels transcription at enhancers, whereas H3K4me1/K36me3 and H3K4me1/K79me2 tag distinct intronic enhancers. While demonstrating that analyzing restricted genomic regions can disclose the combinatorial language of histone modifications, this study highlights the potential of MS-based proteomics in addressing fundamental questions in epigenetics. Overall design: Total RNA was extracted from 5x10^6 untreated RAW 264.7 cells using RNAeasy kit (Qiagen). Libraries were then prepared using TruSeq RNA sample preparation Kit (Illumina) after depleting ribosomal RNA

Publication Title

Chromatin proteomics reveals novel combinatorial histone modification signatures that mark distinct subpopulations of macrophage enhancers.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP111294
PARP14 controls the nuclear accumulation of a subset of type I Interferon-inducible proteins [RNA-seq1]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The enzymes of the poly-ADP-ribose polymerase (PARP) super-family control many relevant cellular processes, but a precise understanding of their activities in different physiological or disease contexts is largely incomplete. We found that transcription of several PARP genes was dynamically regulated upon macrophage activation by several inflammatory stimuli. Specifically, PARP14 was strongly induced by endotoxin stimulation and translocated to the nucleus in stimulated cells. Quantitative mass spectrometry analysis showed that PARP14 bound to a group of interferon-stimulated gene (ISG)-encoded proteins, most with an unknown function, and it was required for their nuclear accumulation. Moreover, PARP14 depletion attenuated transcription of primary antiviral response genes regulated by the transcription factor IRF3, including Ifnb1, thus reducing IFNß production and activation of ISGs involved in the secondary antiviral response. Overall, these data hint at a role of PARP14 in the control of antimicrobial responses and specifically in nuclear activities of a subgroup of ISG-encoded proteins. Overall design: mRNA sequencing of differentially expressed genes in PARP14 WT and KO RAW 264.7 cells, upon: no treatment, LPS, Jak inhibitor or LPS plus Jak inhibitor treatment.

Publication Title

PARP14 Controls the Nuclear Accumulation of a Subset of Type I IFN-Inducible Proteins.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP111296
PARP14 controls the nuclear accumulation of a subset of type I Interferon-inducible proteins [RNA-seq2]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The enzymes of the poly-ADP-ribose polymerase (PARP) super-family control many relevant cellular processes, but a precise understanding of their activities in different physiological or disease contexts is largely incomplete. We found that transcription of several PARP genes was dynamically regulated upon macrophage activation by several inflammatory stimuli. Specifically, PARP14 was strongly induced by endotoxin stimulation and translocated to the nucleus in stimulated cells. Quantitative mass spectrometry analysis showed that PARP14 bound to a group of interferon-stimulated gene (ISG)-encoded proteins, most with an unknown function, and it was required for their nuclear accumulation. Moreover, PARP14 depletion attenuated transcription of primary antiviral response genes regulated by the transcription factor IRF3, including Ifnb1, thus reducing IFNß production and activation of ISGs involved in the secondary antiviral response. Overall, these data hint at a role of PARP14 in the control of antimicrobial responses and specifically in nuclear activities of a subgroup of ISG-encoded proteins. Overall design: mRNA sequencing of differentially expressed genes in PARP14 WT RAW 264.7 cells, with or without LPS treatment

Publication Title

PARP14 Controls the Nuclear Accumulation of a Subset of Type I IFN-Inducible Proteins.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE39323
Ogt chromatin recruitment is mediated by TET proteins in mouse ES cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39321
Ogt chromatin recruitment is mediated by TET proteins in mouse ES cells [expression array]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

O-linked N-acetylglucosamine (O-GlcNAc ) transferase (OGT) activity is essential for embryonic stem (ES) cell viability and mouse development. OGT is present in both cytoplasm and nucleus of different cell types and mediates serine or threonine glycosylation. The Ogt gene locus resides on the X-chromosome and its activity is required for the viability of male ES cells. Using Ogt conditional knock out (KO) ES cells it was shown the failure of establishing stable KO ES clones further suggesting that Ogt activity is required for ES cell self-renewal and pluripotency. For understanding these changes, we performed global gene expression upon silencing of Ogt mediated by esiRNA in mouse Embryonic Stem Cells.

Publication Title

Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP091504
High activity of a broad panel of housekeeping and tissue-specific cis-regulatory elements depends on a subset of ETS proteins
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The genomic repertoire of enhancers and promoters that control the transcriptional output of terminally differentiated cells includes cell type-specific and housekeeping elements. Whether the constitutive activity of these two groups of cis-regulatory elements relies on entirely distinct or instead shared regulators is unknown. By dissecting the cis-regulatory repertoire of macrophages, we found that the ELF subfamily of ETS proteins selectively bound within 60 bp from the transcription start sites of highly active housekeeping genes. ELFs also bound constitutively active, but not poised macrophage-specific enhancers and promoters. The role of ELFs in promoting constitutive transcription is suggested by multiple evidences: ELF sites enabled transcriptional activation by endogenous and minimal synthetic promoters; ELF recruitment was stabilized by the transcriptional machinery, and ELF proteins mediated recruitment of transcriptional and chromatin regulators to core promoters. These data indicate that a distinct subfamily of ETS proteins imparts high transcriptional activity to a broad range of housekeeping and tissue-specific cis-regulatory elements, which is consistent with the role of an ETS family ancestor in core promoter regulation in a lower eukaryote. Overall design: Nascent RNA sequencing of primary bone marrow-derived macrophages (BMDM) This series contains a re-analysis of GSM1880858 from GSE73021. The file MacroTFs_171-genes.fpkm_tracking.gz contains the FPKM values for this sample.

Publication Title

High constitutive activity of a broad panel of housekeeping and tissue-specific <i>cis</i>-regulatory elements depends on a subset of ETS proteins.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact