To identify a prognostic gene signature accounting for the distinct clinical outcomes in ovarian cancer patients
A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer.
Specimen part
View SamplesMultiple myeloma (MM)-induced osteoclast (OC) formation occurs in close contact with MM cell infiltration into the bone marrow (BM) due to the imbalance of the receptor activator of NF-kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio in favor of RANKL in the micorenvironment. Soluble factors including CCL3/MIP-1?, IL7 and IL-3 also contribute to the increased OC formation in MM.The immunomodulatory drugs (IMiDs) directly inhibit OCs, however their effect on the mechanisms involved in MM-induced OC formation are not known and have been investigated in this study. We found that both Lenalidomide (LEN) and Pomalidomide (POM), at concentration ranging reached in vivo, significantly blunted RANKL up-regulation normalizing the RANKL/OPG ratio in human BM osteoprogenitor cells (PreOBs) co-cultured with MM cells and inhibited CCL3/MIP-1? production by MM cells. The reduction of CD49d expression on MM cells, a molecule critically involved in RANKL up-regulation in the micorenvironment, accompanied this effect. Consistently the pro-osteoclastogenic property of the conditioned medium of MM cells co-cultured with PreOBs was reduced in the presence of both IMiDs. By microarray analysis we further investigated the effect of POM and LEN on the transcriptional profile of both MM cells and PreOBs. We found a significant down-regulation in MM cells, in addition to CD49d, of genes belonging to the adhesion molecules family such as ITGA8 and ICAM2 (CD102) induced by both IMiDs compounds. In conclusion our data suggest that POM and LEN inhibits MM-induced OC formation through the inhibition of RANKL/OPG ratio targeting the expression of adhesion molecules by MM cells.
Immunomodulatory drugs lenalidomide and pomalidomide inhibit multiple myeloma-induced osteoclast formation and the RANKL/OPG ratio in the myeloma microenvironment targeting the expression of adhesion molecules.
Cell line, Treatment
View SamplesMyeloma bone disease is characterized by tremendous bone destruction with suppressed bone formation. IL-3 is a multifunctional cytokine that increases myeloma cell growth and osteoclast proliferation while inhibiting osteoblast differentiation. While IL-3 appears to be an attractive therapeutic target for myeloma, attempts at targeting IL-3 have been unsuccessful due to IL-3s effects on normal hematopoiesis. Thus identification of IL-3s downstream effects in MMBD is important for effective targeting of this cytokine in MM. Here we demonstrated that treatment of myeloma patient CD14+ bone marrow monocyte / macrophages with IL-3 induces high levels of Activin A (ActA), a pluripotent TGF- superfamily member that, like IL-3, modulates MMBD by enhancing osteoclastogenesis and inhibiting osteoblasts. We show that IL-3 induced osteoclastogenesis is mediated by ActA and is RANKL independent. Additionally, IL-3 induced ActA secretion is greatest early in osteoclastogenesis and ActA acts early in osteoclastogenesis. Therefore we suggest that therapies targeting ActA production should block IL-3s effects in myeloma bone disease.
Bone marrow monocyte-/macrophage-derived activin A mediates the osteoclastogenic effect of IL-3 in multiple myeloma.
Specimen part, Disease, Disease stage, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: microfibril-associated glycoprotein 2.
Specimen part, Disease stage, Cell line, Treatment
View SamplesTo demonstrate the use of a whole-genome oligonucleotide array to perform expression profiling on a series of microdissected late-stage, high-grade papillary serous ovarian adenocarcinomas to establish a prognostic gene signature correlating with survival and to identify novel survival factors in ovarian cancer.
A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: microfibril-associated glycoprotein 2.
Specimen part, Disease stage
View SamplesIdentification of signaling events contributing to the effect of recombinant MAGP2 on HUVECs and OVCA429. We used microarrays to identify the signaling events and up-regulated genes associated with MAGP2.
A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: microfibril-associated glycoprotein 2.
Cell line, Treatment
View SamplesWe have undertaken a screen of mouse limb tendon cells in order to identify molecular pathways involved in tendon development. Mouse limb tendon cells were isolated based on Scleraxis (Scx) expression at different stages of development: E11.5, E12.5 and E14.5
Transcriptomic analysis of mouse limb tendon cells during development.
No sample metadata fields
View SamplesThe involvement of osteocytes in multiple myeloma (MM)-induced osteoclast formation and the occurrence of bone lesions are still unknown. Osteocytes regulate bone remodeling at least in part through the cell death and apoptosis triggering osteoclast recruitment and formation. In this study, firstly we shown that MM cells increased osteocyte death and affect their transcriptional profile evaluated by microarray analysis up-regulating osteoclastogenic cytokines as interleukin (IL)-11. Consistently we show that the conditioned media of human pre-osteocytes co-cultured with MM cells significantly increased osteoclastogenesis. To translate into a clinical perspective such in vitro evidences, we then performed histological analysis on bone biopsies obtained from MM patients, MGUS and healthy controls. We found a significant reduction in the number of viable osteocytes in MM patients as compared to controls. A significant negative correlation between the number of viable osteocytes and that of osteoclasts was also demonstrated. Moreover, as regards the skeletal involvement, we found that MM patients with bone lesions have a significant lower number of viable osteocyte than those without. Overall, our data suggest a role of osteocytic cell death in MM-induced osteoclast formation in vitro and MM bone disease in vivo in MM patients.
Increased osteocyte death in multiple myeloma patients: role in myeloma-induced osteoclast formation.
Specimen part, Cell line, Treatment
View SamplesCellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state into a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. We showed that mature adipocytes (MA) and follicular granulosa cells (GC), which have distinct functions in vivo, can dedifferentiate during culture in vitro and acquire multipotency.
Gene expression profiling in multipotent DFAT cells derived from mature adipocytes.
Specimen part
View SamplesGene expression profiles generated from skeletal muscle biopsies taken from participants of the HERITAGE family study. Participants completed an endurance training regime in which a skeletal muscle biopsy was taken prior to the start and after the final session of the program. Biopsies were used to generate Affymetrix gene expression microarrays.
The Role of Eif6 in Skeletal Muscle Homeostasis Revealed by Endurance Training Co-expression Networks.
No sample metadata fields
View Samples