refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 391 results
Sort by

Filters

Technology

Platform

accession-icon GSE465
Expression profiling in the muscular dystrophies
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a)

Description

This is a large series human Duchenne muscular dystrophy patient muscle biopsies, in specific age groups, using all available Affymetrix arrays (including a custom MuscleChip produced by the Hoffman lab). Both mixed groups of patients (5 patient biopsies per group) and individual biopsies were done.

Publication Title

Expression profiling in the muscular dystrophies: identification of novel aspects of molecular pathophysiology.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11831
Transcription profiling of biopsies from the descending colon of control subjects
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

These samples were all taken from patients who underwent investigations including colonoscopy but where all tests were normal and the diagnosis of irritable bowel syndrome was reached. These observations have been used as references in studies of colonic gene expression in inflammatory bowel diseases

Publication Title

Clinical phenotype and gene expression profile in Crohn's disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17938
Retinal Pigment Epithelial Cells Upregulate Expression of Complement Factors after Co-culture with Activated T Cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we examined the effect of T cell-derived cytokines on retinal pigment epithelial (RPE) cells with respect to expression of complement components. We used an in vitro co-culture system in which CD3/CD28-activated human T cells were separated from the human RPE cell line (ARPE-19) by a membrane. Differential gene expression in the RPE cells of complement factor genes was identified using gene arrays, and selected gene transcripts were validated by q-RT-PCR. Protein expression was determined by ELISA and immunoblotting. Co-culture with activated T cells increased RPE mRNA and/or protein expression of complement components C3, factors B, H, H-like 1, CD46, CD55, CD59, and clusterin, in a dose-dependent manner. Soluble factors derived from activated T cells are capable of increasing expression of complement components in RPE cells. This is important for the further understanding of inflammatory ocular diseases such as uveitis and age-related macular degeneration.

Publication Title

Retinal pigment epithelial cells upregulate expression of complement factors after co-culture with activated T cells.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon E-MEXP-548
RNAi knock down of RNA binding IMP proteins in human epithelial (HeLa) cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

To identify factors and pathways regulated by IMP proteins and obtain leads to the mechanism behind the phenotypic changes, we compared the gene expression profiles of IMP siRNA treated cells with mock treated cells. Triplicate gene expression profiles were generated from both the IMP(1,3)A and IMP(1,3)B siRNA sets and were compared to the mock transfected cells. cRNA was hybridized to Affymetrix human U133A arrays.

Publication Title

RNA-binding IMPs promote cell adhesion and invadopodia formation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE55650
p38 MAPK activation upregulates pro-inflammatory pathways in skeletal muscle cells from insulin resistant type 2 diabetic patients
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Skeletal muscle is the key site of peripheral insulin resistance in type 2 diabetes. Insulin-stimulated glucose uptake is decreased in differentiated diabetic myotubes in keeping with a retained genetic/epigenetic defect of insulin action.

Publication Title

p38 MAPK activation upregulates proinflammatory pathways in skeletal muscle cells from insulin-resistant type 2 diabetic patients.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10685
Human skeletal muscle biopsies from a 3h IL-6 infusion
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Skeletal muscle has been identified as a secretory organ. We hypothesized that IL-6, a cytokine secreted from skeletal muscle during exercise, could induce production of other secreted factors in skeletal muscle.

Publication Title

Calprotectin is released from human skeletal muscle tissue during exercise.

Sample Metadata Fields

Sex, Subject, Time

View Samples
accession-icon SRP068907
mRNA-seq of nuclear RNA extracted from T4 and T5 neurons of D. melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

T4 and T5 neurons are components of the neuronal circuit for motion vision in flies. To identify genes involved in neuronal computation of T4 and T5 neurons, we perfomed transcriptome analysis. Nuclei of T4 and T5 neurons were immunoprecipitated, total RNA was harvested and used for mRNA-seq with Illumina technology. In two biological replicates, we mapped 154 and 119 million reads to D. melanogaster genome. mRNA-seq provided information about expression levels of 17,468 annotated transcripts in the T4 and T5 neurons. Overall design: Cell type – specific transcriptome analysis of the RNA isolated from immunoprecipitated nuclei, performed in two biological replicates

Publication Title

RNA-Seq Transcriptome Analysis of Direction-Selective T4/T5 Neurons in Drosophila.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE18113
Expression data from Human MicroVascular Endothelial Cells (HMVECS)
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The activation of endothelium by tumor cells is one of the main steps by tumor metastasis. The role of the blood components (platelets and leukocytes) in this process remain unclear.

Publication Title

Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30802
Plasticity of adult human pancreatic duct cells by neurogenin3-mediated reprogramming
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Aims/hypothesis: Duct cells isolated from adult human pancreas can be reprogrammed to express islet beta cell genes by adenoviral transduction of the developmental transcription factor neurogenin3 (Ngn3). In this study we aimed to fully characterize the extent of this reprogramming and intended to improve it.

Publication Title

Plasticity of adult human pancreatic duct cells by neurogenin3-mediated reprogramming.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9000
Effect of HDAC inhibitors on expression of androgen induced genes
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Elevated levels of androgen receptor (AR) in prostate cancer confer resistance to current antiandrogens and play a causal role in disease progression due to persistent target gene activation. Through pharmacologic and genetic approaches, we show that half of all direct AR target genes, including TMPRSS2, the primary driver of ETS fusion transcripts in 70 percent of human prostate cancers, require histone deacetylase (HDAC) activity for transcriptional activation by AR. Surprisingly, the HDAC3-NCoR complex, which typically functions to repress gene expression by nuclear receptors, is required for AR target gene activation. Prostate cancer cells treated with HDAC inhibitors have reduced AR protein levels, but we show that the mechanism of blockade of AR activity is through failure to assemble a coactivator/RNA polymerase II complex after AR binds to the enhancers of target genes. Failed complex assembly is associated with a phase shift in the cyclical wave of AR recruitment that typically occurs in response to ligand treatment. HDAC inhibitors retain the ability to block AR activity in hormone refractory prostate cancer models and therefore merit clinical investigation in this setting. HDAC-regulated AR target genes defined here can serve as biomarkers to ensure sufficient levels of HDAC inhibition.

Publication Title

Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact