refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 434 results
Sort by

Filters

Technology

Platform

accession-icon SRP041150
Pseudomonas aeruginosa PA30 transcriptome in tap and waste water
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

Aim of this project was to determine the transcriptional response of the isolate PA30 to tap water and waste water.

Publication Title

Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP041151
Pseudomonas aeruginosa PA49 transcriptome in tap and waste water
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

Aim of this project was to determine the transcriptional response of the isolate PA49 to tap water and waste water.

Publication Title

Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP093775
Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor Hepatocyte nuclear factor 4 alpha (zebrafish RNA-seq)
  • organism-icon Danio rerio
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We performed RNA-seq from 6 days post fertilization hnf4a-/- and hnf4a+/+ zebrafish larval digestive tracts raised in the absence (Germ Free, GF) or presence (Conventionalized, CV) of microbiota. We found that zebrafish hnf4a activates almost half of the microbiota-suppressed genes, indicating that the microbiota supress Hnf4a trans-activity. We also provide evidence suggesting that microbial suppression of Hnf4a may contribute to IBD pathogenesis. Overall design: Generation and analysis of RNA-seq from hnf4a-/- and hnf4a+/+ zebrafish larvae in the absence (Germ Free, GF) or presence (Conventionalized, CV) microbiota.

Publication Title

Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor Hepatocyte nuclear factor 4 alpha.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8660
C-terminal diversity within the p53 family accounts for differences in DNA binding and transcriptional activity
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The p53 family is known as a family of transcription factors with functions in tumor suppression and development. Whereas the central DNA binding domain is highly conserved among the three family members p53, p63 and p73, the C-terminal domains (CTDs) are diverse and subject to alternative splicing and post-translational modification. Here we demonstrate that the CTDs strongly influence DNA binding and transcriptional activity. While p53 and the p73 isoform p73gamma have basic CTDs and form weak sequence-specific protein-DNA complexes, the major p73 isoforms alpha, beta and delta have neutral CTDs and bind DNA strongly. A basic CTD has been previously shown to enable sliding along the DNA backbone and to facilitate the search for binding sites in the complex genome. Our experiments, however, reveal that a basic CTD also reduces protein-DNA complex stability, intranuclear mobility, promoter occupancy in vivo, transgene activation and induction of cell cycle arrest or apoptosis. A basic CTD in p53 and p73gamma therefore provides both positive and negative regulatory functions presumably to enable rapid switching of protein activity in response to stress. In contrast, most p73 isoforms exhibit constitutive DNA binding activity consistent with a predominant role in developmental control.

Publication Title

C-terminal diversity within the p53 family accounts for differences in DNA binding and transcriptional activity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE1869
Ischemic and Nonischemic CM and NF Hearts
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Pre-LVAD and explanted ischemic and nonischemic cardiomyopathy and nonfailing hearts all normalized with RMA

Publication Title

Gene expression analysis of ischemic and nonischemic cardiomyopathy: shared and distinct genes in the development of heart failure.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MEXP-2506
Transcription profiling by array of rice grown in different light and temperature cycles
  • organism-icon Oryza sativa
  • sample-icon 78 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Rice (Oryza sativa, ssp. Japonica, cv. Nipponbare 1) plants were grown in a Conviron PGR 15 growth chamber using precise control of temperature, light, and humidity.<br></br>Diurnal (driven) conditions included 12L:12D light cycles and 31C/20C thermocycles in three different combinations. These were: photocycles (LDHH), 12 hrs. light (L)/12 hrs. dark (D) at a constant temperature (31C; HH); photo/thermocycles (LDHC): 12 hrs. light (L) /12 hrs. dark (D) with a high day temperature (31C) and a low night temperature (20C); and thermocycles (LLHC): continuous light (LL) with 12 hrs. high/12 hrs. low temperature (31C, day; 20C, night). Light intensity and relative humidity were 1000 micromol m-2s-2 and 60%, respectively.<br></br>Three-month-old rice plants were entrained for at least one week under the respective condition prior to initiation of each experiment. Leaves and stems from individual rice plants were collected every four hours for 48 hrs in driven (diurnal) conditions followed by a two day freerun spacer under continuous light/temperature followed by two additional days of sampling under the same continuous free run condition.<br></br>

Publication Title

Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon E-MTAB-275
Transcription profiling by array of rice Indica 93-11 after growth in different light and temperature conditions
  • organism-icon Oryza sativa
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Rice (Oryza sativa, spp. Indica, cv. 93-11) plants were grown in a Conviron PGR 15 growth chamber using precise control of temperature, light, and humidity.<br></br>Diurnal (driven) conditions included 12L:12D light cycles and 31C/20C thermocycles in three different combinations. These were: photocycles (LDHH), 12 hrs. light (L)/12 hrs. dark (D) at a constant temperature (31C; HH); photo/thermocycles (LDHC): 12 hrs. light (L) /12 hrs. dark (D) with a high day temperature (31C) and a low night temperature (20C); and thermocycles (LLHC): continuous light (LL) with 12 hrs. high/12 hrs. low temperature (31C, day; 20C, night). Light intensity and relative humidity were 1000 micromol m-2s-2 and 60%, respectively.<br></br>Three-month-old rice plants were entrained for at least one week under the respective condition prior to initiation of each experiment. Leaves and stems from individual rice plants were collected every four hours for 48 hrs in driven (diurnal) conditions followed by a two day freerun spacer under continuous light/temperature followed by two additional days of sampling under the same continuous free run condition.

Publication Title

Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon GSE7201
p73 inhibits malignant transformation
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

sh RNA of p73 in Fibroblasts compared to non-silencing control

Publication Title

p73 poses a barrier to malignant transformation by limiting anchorage-independent growth.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE84142
Effect of Serum Response Factor (SRF) gene deletion on the adult cardiac gene expression at baseline and in response to phenylephrine
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The objective of this study is to assess the effects of the Serum Response Factor deletion on the cardiac gene expression program at different time points after the deletion (day 8 and day 25) and to compare the response of SRF-deficient heart and control heart to phenylephrine, an alpha-adrenergic agonist triggering cardiac hypertrophy.

Publication Title

Nicotinamide Riboside Preserves Cardiac Function in a Mouse Model of Dilated Cardiomyopathy.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE37693
Gene Expression Effects of IL-13 on Primary Human Airway Epithelial Cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Primary culture airway epithelial cells, grown under physiologic air-liquid interface conditions, with, or without IL-13 in order to study the effects of this cytokine on mucous cell metaplasia, an important feature of asthma and COPD.

Publication Title

IL-13-induced airway mucus production is attenuated by MAPK13 inhibition.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact