refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 915 results
Sort by

Filters

Technology

Platform

accession-icon SRP136127
Nascent transcription of E14, PWWP2AKO, and PWWP2A/B DKO
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Transcriptional regulation by chromatin is a highly dynamic process directed through the recruitment and coordinated action of epigenetic modifiers and readers of these modifications. Using an unbiased proteomic approach to find interactors of H3K36me3, a modification enriched on active chromatin, here we identify PWWP2A and HDAC2 among the top interactors. PWWP2A and its paralog PWWP2B form a stable complex with NuRD subunits MTA1/2/3:HDAC1/2:RBBP4/7, but not with MBD2/3, p66a/ß, and CHD3/4. PWWP2A competes with MBD3 for binding to MTA1, thus defining a new variant NuRD complex that is mutually exclusive with the MBD2/3-containing NuRD. In mESCs, PWWP2A/B is most enriched at highly transcribed genes. Loss of PWWP2A/B leads to increases in histone acetylation predominantly at highly expressed genes, accompanied by decreases in Pol II elongation. Collectively, these findings suggest a role for PWWP2A/B in regulating transcription through the fine-tuning of histone acetylation dynamics at actively transcribed genes. Overall design: In order to explore the influence of PWWP2A/B on nascent transcription, we isolated the 4sU-labelled nascent transcripts, followed by deep sequencing. Three cell lines, E14, PWWP2A KO, and PWWP2A/B double knockout, and three biological replicates.

Publication Title

A variant NuRD complex containing PWWP2A/B excludes MBD2/3 to regulate transcription at active genes.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP169609
Selective roles of vertebrate PCF11 in premature and full-length transcript termination (chromatin-bound RNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 96 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The pervasive nature of RNA polymerase II (Pol II) transcription requires efficient termination. A key player in this process is the cleavage and polyadenylation (CPA) factor PCF11, which directly binds to the Pol II C-terminal domain and dismantles elongating Pol II from DNA in vitro. We demonstrate that PCF11-mediated termination is essential for vertebrate development. A range of genomic analyses, including: mNET-seq, 3' mRNA-seq, chromatin RNA-seq and ChIP-seq, reveals that PCF11 enhances transcription termination and stimulates early polyadenylation genome-wide. PCF11 binds preferentially between closely spaced genes, where it prevents transcriptional interference and downstream gene silencing. Notably, PCF11 is sub-stoichiometric to the CPA complex. Low levels of PCF11 are maintained by an auto-regulatory mechanism involving premature termination of its own transcript, and are important for normal development. Both in human cell culture and during zebrafish development, PCF11 selectively attenuates the expression of other transcriptional regulators by premature CPA and termination. Overall design: Semi-nascent transcriptome measured by chromatin-bound RNA-seq in HeLa cells. Control and PCF11 knock-down (2 biological replicates) and control and PCF11 PAS1 deletion (4 biological replicates).

Publication Title

Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP175015
Selective roles of vertebrate PCF11 in premature and full-length transcript termination (zebrafish 3' mRNA-seq)
  • organism-icon Danio rerio
  • sample-icon 56 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The pervasive nature of RNA polymerase II (Pol II) transcription requires efficient termination. A key player in this process is the cleavage and polyadenylation (CPA) factor PCF11, which directly binds to the Pol II C-terminal domain and dismantles elongating Pol II from DNA in vitro. We demonstrate that PCF11-mediated termination is essential for vertebrate development. A range of genomic analyses, including: mNET-seq, 3' mRNA-seq, chromatin RNA-seq and ChIP-seq, reveals that PCF11 enhances transcription termination and stimulates early polyadenylation genome-wide. PCF11 binds preferentially between closely spaced genes, where it prevents transcriptional interference and downstream gene silencing. Notably, PCF11 is sub-stoichiometric to the CPA complex. Low levels of PCF11 are maintained by an auto-regulatory mechanism involving premature termination of its own transcript, and are important for normal development. Both in human cell culture and during zebrafish development, PCF11 selectively attenuates the expression of other transcriptional regulators by premature CPA and termination. Overall design: 3' mRNA-seq in individual zebrafish embryo heads. Two types of mutants: zPCF11 null and zPCF11 with deletion of PAS1. Wild-type (wt, +/+), heterozygous (het, +/-) and homozygous mutant (hom, -/-) embryos were analyzed. Wild-type and heterozygous animals were phenotypically indistinguishable.

Publication Title

Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP175016
Selective roles of vertebrate PCF11 in premature and full-length transcript termination (human 3' mRNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The pervasive nature of RNA polymerase II (Pol II) transcription requires efficient termination. A key player in this process is the cleavage and polyadenylation (CPA) factor PCF11, which directly binds to the Pol II C-terminal domain and dismantles elongating Pol II from DNA in vitro. We demonstrate that PCF11-mediated termination is essential for vertebrate development. A range of genomic analyses, including: mNET-seq, 3' mRNA-seq, chromatin RNA-seq and ChIP-seq, reveals that PCF11 enhances transcription termination and stimulates early polyadenylation genome-wide. PCF11 binds preferentially between closely spaced genes, where it prevents transcriptional interference and downstream gene silencing. Notably, PCF11 is sub-stoichiometric to the CPA complex. Low levels of PCF11 are maintained by an auto-regulatory mechanism involving premature termination of its own transcript, and are important for normal development. Both in human cell culture and during zebrafish development, PCF11 selectively attenuates the expression of other transcriptional regulators by premature CPA and termination. Overall design: 3' mRNA-seq in HeLa cells. Control and PCF11 knock-down (4 biological replicates); control and PCF11 PAS1 deletion clones muA and muB (3 biological replicates); control and additional PCF11 PAS1 deletion clones muC and muD (1 replicate).

Publication Title

Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE10573
Superseries_Endoh2008_PcG_Pou5f1
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Polycomb group (PcG) gene products mediate heritable silencing of developmental regulators in metazoans, participating in one of two distinct multimeric protein complexes, the Polycomb repressive complexes-1 (PRC1) and -2 (PRC2). PRC2 catalyses trimethylation of histone H3 at lysine 27 (H3K27) which in turn is thought to provide a recruitment site for PRC1. Recent studies demonstrate that mono-ubiquitylation of histone H2A at lysine 119 is important in PcG mediated silencing with the core PRC1 component Ring1A/B functioning as the E3 ligase8. PRC2 has been shown to share target genes with the core transcription network to maintain embryonic stem (ES) cells including Oct4 and Nanog. Here we identify an essential role for PRC1 in repressing developmental regulators in ES cells, and thereby in maintaining ES cell pluripotency. A significant proportion of the PRC1 target genes are also repressed by Oct4. We demonstrate that engagement of PRC1 and PRC2 at target genes is Oct4-dependent and moreover that Ring1B interacts with Oct4. Collectively these results show that PcG complexes are instrumental in Oct4-dependent repression required to maintain pluripotency of ES cells. This study provides a first functional link between a core ES cell regulator and global epigenetic regulation of the genome.

Publication Title

Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10476
Gene expression of mouse ES cells, Ring1A/B double KO
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Polycomb group (PcG) gene products mediate heritable silencing of developmental regulators in metazoans, participating in one of two distinct multimeric protein complexes, the Polycomb repressive complexes-1 (PRC1) and -2 (PRC2)1-5. PRC2 catalyses trimethylation of histone H3 at lysine 27 (H3K27) which in turn is thought to provide a recruitment site for PRC13-7. Recent studies demonstrate that mono-ubiquitylation of histone H2A at lysine 119 is important in PcG mediated silencing with the core PRC1 component Ring1A/B functioning as the E3 ligase8. PRC2 has been shown to share target genes with the core transcription network to maintain embryonic stem (ES) cells including Oct4 and Nanog9. Here we identify an essential role for PRC1 in repressing developmental regulators in ES cells, and thereby in maintaining ES cell pluripotency. A significant proportion of the PRC1 target genes are also repressed by Oct4. We demonstrate that engagement of PRC1 and PRC2 at target genes is Oct4-dependent and moreover that Ring1B interacts with Oct4. Collectively these results show that PcG complexes are instrumental in Oct4-dependent repression required to maintain pluripotency of ES cells. This study provides a first functional link between a core ES cell regulator and global epigenetic regulation of the genome.

Publication Title

Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10477
Gene expression of mouse ES cell, conditional Pou5f1 KO
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Polycomb group (PcG) gene products mediate heritable silencing of developmental regulators in metazoans, participating in one of two distinct multimeric protein complexes, the Polycomb repressive complexes-1 (PRC1) and -2 (PRC2)1-5. PRC2 catalyses trimethylation of histone H3 at lysine 27 (H3K27) which in turn is thought to provide a recruitment site for PRC13-7. Recent studies demonstrate that mono-ubiquitylation of histone H2A at lysine 119 is important in PcG mediated silencing with the core PRC1 component Ring1A/B functioning as the E3 ligase8. PRC2 has been shown to share target genes with the core transcription network to maintain embryonic stem (ES) cells including Oct4 and Nanog9. Here we identify an essential role for PRC1 in repressing developmental regulators in ES cells, and thereby in maintaining ES cell pluripotency. A significant proportion of the PRC1 target genes are also repressed by Oct4. We demonstrate that engagement of PRC1 and PRC2 at target genes is Oct4-dependent and moreover that Ring1B interacts with Oct4. Collectively these results show that PcG complexes are instrumental in Oct4-dependent repression required to maintain pluripotency of ES cells. This study provides a first functional link between a core ES cell regulator and global epigenetic regulation of the genome.

Publication Title

Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP165596
chrRNA-seq in wild-type, SmcHD1 MommeD1mut and somKO MEFs
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconNextSeq 550, Illumina HiSeq 2000

Description

In this study we investigate the role of the non-canonical SMC family protein, SmcHD1in the X inactivation. Overall design: Set of allele-specific chromatin RNA-seq experiments on female clonal inter-specific (M.m.domesticus FVB x M.m.Castaneus) MEF cell lines: wild-type MEFs, SmcHD1 MomeD1 mut MEFs (SmcHD1 null) and SmcHD1 CRISPR KO MEFs (derived from wild-type MEFs after establishemnt of X inactivation).

Publication Title

The non-canonical SMC protein SmcHD1 antagonises TAD formation and compartmentalisation on the inactive X chromosome.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE41267
KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE40701
Gene expression changes following knockdown of Kdm2b on mESCs
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In order to study the effects of Kdm2b binding at CpG islands, Kdm2b was knocked down in mouse embryonic stem cells using shRNA and gene expression profiled using Affymetrix arrays

Publication Title

KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact