refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 18 results
Sort by

Filters

Technology

Platform

accession-icon SRP096081
A Histone Deacetylase 3-Dependent Pathway Delimits Peripheral Myelin Growth and Functional Regeneration [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Schwann cell remyelination defects impair functional restoration after nerve damage, contributing to peripheral neuropathies. The mechanisms that mediate remyelination block remain elusive. Upon small-molecule epigenetic screening, we identified HDAC3, a histone-modifying enzyme, as a potent inhibitor of peripheral myelinogenesis. Inhibition of HDAC3 markedly enhances myelin growth and regeneration, and improves functional recovery after peripheral nerve injury. HDAC3 antagonizes myelinogenic neuregulin/PI3K/AKT signaling axis. Moreover, genome-wide profiling analyses reveal that HDAC3 represses pro-myelinating programs through epigenetic silencing, while coordinating with p300 histone acetyltransferase to activate myelination-inhibitory programs that include HIPPO signaling effector TEAD4 to inhibit myelin growth. Schwann-cell-specific deletion of either Hdac3 or Tead4 results in a profound increase in myelin thickness in sciatic nerves. Thus, our findings identify the HDAC3-TEAD4 network as a dual-function switch of cell-intrinsic inhibitory machinery that counters myelinogenic signals and maintains peripheral myelin homeostasis, highlighting the therapeutic potential of transient HDAC3 inhibition for improving peripheral myelin repair. Overall design: 4 RNA-Seq samples from P6 sciatic nerves of Ctrl and Hdac3-cKO mice (Cnpcre-Ctrl, Cnpcre-cKO, Dhhcre-Ctrl, Dhhcre-cKO)

Publication Title

A histone deacetylase 3-dependent pathway delimits peripheral myelin growth and functional regeneration.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE51062
Expression data from human GBMs
  • organism-icon Homo sapiens
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of human glioblastoma multiforme tumors revealed genes that are upregulated in tumors expressing EGFRvIII compared to those expressing wild-type EGFR

Publication Title

Sprouty2 Drives Drug Resistance and Proliferation in Glioblastoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE51147
Expression data from rat tumors formed by 9L.EV or 9L.EGFRvIII cells
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

Analysis of rat tumor xenografts revealed genes that are upregulated in tumors expressing EGFRvIII

Publication Title

Sprouty2 Drives Drug Resistance and Proliferation in Glioblastoma.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE11178
Control of hematopoietic stem cell quiescence by the E3 Ubiquitin Ligase Fbw7
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Ubiquitination is a post-translational mechanism of control of diverse cellular processes. We focus here on the ubiquitin ligase Fbw7, a recently identified hematopoietic tumor suppressor that can target for degradation several important oncogenes including Notch1, c-Myc and cyclin E. We have generated conditional Fbw7 knock-out animals and inactivated the gene in hematopoietic stem cells (HSC) and their differentiated progeny. Deletion of Fbw7 specifically and rapidly affects the HSC compartment in a cell-autonomous manner. Fbw7-/- HSCs show defective maintenance of quiescence, leading to impaired self-renewal and a severe loss of competitive repopulating capacity. Furthermore, Fbw7-/- HSC are unable to colonize the thymus leading to a profound depletion of T cell progenitors. Deletion of Fbw7 in bone marrow stem cells and progenitors leads to the stabilization of c-Myc, a transcription factor previously implicated in HSC self-renewal. On the other hand, neither Notch1 nor cyclin E are stabilized in the bone marrow of Fbw7 deficient mice. Genome-wide transcriptome studies of Fbw7-/- HSC and hematopoietic progenitors indicate that Fbw7 controls, through the regulation of HSC cell cycle entry, the global transcriptional signature that is associated with the quiescent, self-renewing HSC phenotype.

Publication Title

Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15194
Hedgehog signaling is dispensable for adult hematopoietic stem cell function
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Hedgehog (Hh) signaling pathway is a developmentally conserved regulator of stem cell function. Several reports suggested that Hh signaling is an important regulator of hematopoietic stem cell (HSC) maintenance and differentiation. Here we test this hypothesis in vivo using both gain- and loss-of-function Hh genetic models. Surprisingly, our studies demonstrate that conditional Smoothened (Smo) deletion or over-activation has no significant effects on adult HSC self-renewal and function. Moreover, they indicate a lack of synergism between the Notch and Hh pathways in HSC function, as RBPJ- and Smo-deficiency do not affect hematopoiesis. In agreement with this notion, detailed genome-wide transcriptome analysis reveals that silencing of Hh signaling does not significantly alter the HSC-specific gene expression signature. Our studies demonstrate that the Hh signaling pathway is dispensable for adult HSC function and suggest that the Hh pathway can be targeted in future clinical trials addressing the effect of Hh inhibition on leukemia-initiating cell maintenance.

Publication Title

Hedgehog signaling is dispensable for adult hematopoietic stem cell function.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP100686
Novel SF3B1 Deletion Mutations Result in Aberrant RNA Splicing in CLL Patients
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Recurrent mutations in RNA splicing factors SF3B1, U2AF1, and SRSF2 have been reported in hematologic cancers including myelodysplastic syndromes (MDS) and chronic lymphocytic leukemia (CLL). However, SF3B1 is the only splicing associated gene to be found mutated in CLL and has been shown to induce aberrant splicing. To investigate if any other genomic aberration caused similar transcriptome changes, we clustered RNASeq samples based on an alternative 3' splice site (ss) pattern previously identified in SF3B1-mutant CLL patients. Out of 215 samples, we identified 37 (17%) with alternative 3' ss usage, the majority of which harbored known SF3B1 hotspot mutations. Interestingly, 3 patient samples carried previously unreported in-frame deletions in SF3B1 around K700, the most frequent mutation hotspot. To study the functional effects of these deletions, we used various minigenes demonstrating that recognition of canonical 3' ss and alternative branchsite are required for aberrant splicing, as observed for SF3B1 p.K700E. The common mechanism of action of these deletions and substitutions result in similar sensitivity of primary cells towards splicing inhibitor E7107. Altogether, these data demonstrate that novel SF3B1 in-frame deletion events identified in CLL result in aberrant splicing, a common biomarker in spliceosome-mutant cancers. Overall design: 13 CLL samples, 5 SF3B1 WT, 5 SF3B1 p.K700E, and 3 with in-frame deletions around the K700 position of SF3B1

Publication Title

Novel <i>SF3B1</i> in-frame deletions result in aberrant RNA splicing in CLL patients.

Sample Metadata Fields

Disease, Disease stage, Subject

View Samples
accession-icon GSE27833
Notch signaling in HSC
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE27811
Expression data from LSK WT, GMP WT and GMP NcstnKO
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Notch signaling is one of the central regulators of differentiation in a variety of organisms and tissue types. Within the hematopoietic system, Notch is essential for the emergence of definitive HSC during fetal life and controls adult HSC differentiation to the T-cell lineage. Notch activation is controlled by the gamma-secretase complex complex, composed of presenilin, nicastrin (Ncstn), anterior pharynx-1 (Aph1), and presenilin enhancer-2

Publication Title

A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE27799
Expression data from LSK WT and LSK N1-C+
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Notch signaling is one of the central regulators of differentiation in a variety of organisms and tissue types. Within the hematopoietic system, Notch is essential for the emergence of definitive HSC during fetal life and controls adult HSC differentiation to the T-cell lineage. Notch activation is controlled by the gamma-secretase complex complex, composed of presenilin, nicastrin (Ncstn), anterior pharynx-1 (Aph1), and presenilin enhancer-2

Publication Title

A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE27794
Expression data from LSK WT and LSK NcstnKO
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Notch signaling is one of the central regulators of differentiation in a variety of organisms and tissue types. Within the hematopoietic system, Notch is essential for the emergence of definitive HSC during fetal life and controls adult HSC differentiation to the T-cell lineage. Notch activation is controlled by the gamma-secretase complex complex, composed of presenilin, nicastrin (Ncstn), anterior pharynx-1 (Aph1), and presenilin enhancer-2

Publication Title

A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia.

Sample Metadata Fields

Sex, Age

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact