The sequence of gene regulatory events that drive neonatal germ cell development in the mammalian testis is not yet clear. We assessed changes in mRNA utilization in the neonatal testis at 1 and 4 dpp, times when the testis contains quiescent gonocytes (1 dpp) and proliferating spermatogonia (4 dpp). There are not thought to be major changes in the nature or number of somatic cells over that interval.
Translational activation of developmental messenger RNAs during neonatal mouse testis development.
Age, Specimen part
View SamplesWhen using cell lines to study cancer, phenotypic similarity to the original tumor is paramount. Yet, little has been done to characterize how closely Merkel cell carcinoma (MCC) cell lines model native tumors. To determine their similarity to MCC tumor samples, we characterized MCC cell lines via gene expression microarrays. Using whole transcriptome gene expression signatures and a computational bioinformatic approach, we identified significant differences between variant cell lines (UISO, MCC13, and MCC26) and fresh frozen MCC tumors. Conversely, the classic WaGa and Mkl-1 cell lines more closely represented the global transcriptome of MCC tumors. When compared to publicly available cancer lines, WaGa and Mkl-1 cells were similar to other neuroendocrine tumors, but the variant cell lines were not. WaGa and Mkl-1 cells grown as xenografts in mice had histological and immunophenotypical features consistent with MCC, while UISO xenograft tumors were atypical for MCC. Spectral karyotyping and short tandem repeat analysis of the UISO cells matched the original cell line's description, ruling out contamination. Our results validate the use of transcriptome analysis to assess the cancer cell line representativeness and indicate that UISO, MCC13, and MCC26 cell lines are not representative of MCC tumors, whereas WaGa and Mkl-1 more closely model MCC.
Assessment of cancer cell line representativeness using microarrays for Merkel cell carcinoma.
Specimen part, Disease, Cell line
View SamplesThis study aims at a comprehensive understanding of the genomic program activated during early-phase of collateral vessel growth in a rat model for cerebral adaptive arteriogenesis (3-VO). While arteriogenesis constitutes a promising therapeutic concept for cerebrovascular ischemia, genomic profiles essential for therapeutic target identification were analysed solely for collateral arteries of the heart and periphery. Despite challenging anatomical conditions of the brain the 3-VO model allows identification of differentially expressed genes during adaptive cerebral arteriogenesis by selective removal of the posterior cerebral artery (PCA).
Induction of cerebral arteriogenesis leads to early-phase expression of protease inhibitors in growing collaterals of the brain.
Age
View SamplesAssay of gene expression pattern differences between liver cancer tissue and normal liver tissue from the same mouse by microarray in 4 separate mice injected with recombinant adeno-associated viral (AAV) vector
Assessing the potential for AAV vector genotoxicity in a murine model.
Sex, Specimen part
View SamplesAdministration of exogenous mesenchymal stem cells (MSCs) has been shown to improve the recovery from acute kidney injury (AKI). It has been suggested that the beneficial effect of MSCs is related to the paracrine release of factors favouring proliferation of intrinsic epithelial cells survived to injury rather than to their trans-differentiation. However the factors involved remain to be determined. In the present study we demonstrated that microvesicles (MVs) derived from human bone marrow MSCs are able to stimulate in vitro proliferation and apoptosis resistance of tubular epithelial cells (TEC). In addition, MVs were found to accelerate in vivo the morphological and functional recovery of glycerol induced AKI in SCID mice by inducing TEC proliferation. The effect of MVs on the recovery of AKI was comparable to that of human MSC treatment. In vitro we found that the CD44 and beta1-integrin-dependent incorporation of MVs in TEC was required for their biological action. However, despite their internalization, RNase-treated MVs failed to induce in vitro apoptosis resistance and TEC proliferation, and in vivo recovery from AKI, suggesting an RNA-dependent biological effect. Microarray analysis and quantitative RT-PCR of MV-RNA extract indicated that MVs were shuttling a specific subset of cellular mRNA, such as mRNA associated with the mesenchymal differentiative phenotype and with several cell functions involved in the control of transcription, proliferation, apoptosis and cell immune regulation. These results suggest that MVs derived from MSCs may activate a proliferative program in TEC survived to injury in AKI by an horizontal transfer of mRNA.
Mesenchymal stem cell-derived microvesicles protect against acute tubular injury.
No sample metadata fields
View SamplesEpidermal stem cells ensure proper faring of skin homeostatic processes under both physiological and challenging conditions. Currently, the molecular events underpinning ageing within the epidermal stem cell niche are poorly understood.
In Silico Analysis of the Age-Dependent Evolution of the Transcriptome of Mouse Skin Stem Cells.
Age, Specimen part
View SamplesWe used whole-genome microarrays to identify differentially expressed genes in leaves of GA-deficient (35S::PcGA2ox) and/or GA-insensitive (35S::rgl1) transgenics as compared to WT poplar (717-1B4 genotype).
Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees.
Specimen part
View SamplesSamples were taken from surgically resected tumor specimens from patients with proximal colon cancer. The expression profiles were determined using the Affymetrix GeneChip Human Exon 1.0 ST Array version 2. APC gene mutation status was determined using Sanger sequencing. A classifier for APC mutation status was trained using these expression data.
Wild-type APC predicts poor prognosis in microsatellite-stable proximal colon cancer.
Specimen part
View SamplesGene expression in LCLs from PA patients, their parents, and HapMap sex and age match controls at low glucose (9 mg/dL) and normal glucose growth conditions.
Gene expression in cell lines from propionic acidemia patients, carrier parents, and controls.
Sex, Age, Disease, Disease stage, Cell line, Treatment
View SamplesWe have used microarray technology to identify the transcriptional targets of Rho subfamily GTPases. This analysis indicated that murine fibroblasts transformed by these proteins show similar transcriptomal profiles. Functional annotation of the regulated genes indicate that Rho subfamily GTPases target a wide spectrum of biological functions, although loci encoding proteins linked to proliferation and DNA synthesis/transcription are up-regulated preferentially. Rho proteins promote four main networks of interacting proteins nucleated around E2F, c-Jun, c-Myc, and p53. Of those, E2F, c-Jun and c-Myc are essential for the maintenance of cell transformation. Inhibition of Rock, one of the main Rho GTPase targets, leads to small changes in the transcriptome of Rho-transformed cells. Rock inhibition decreases c-myc gene expression without affecting the E2F and c-Jun pathways. Loss-of-function studies demonstrate that c-Myc is important for the blockage of cell-contact inhibition rather than for promoting the proliferation of Rho-transformed cells. However, c-Myc overexpression does not bypass the inhibition of cell transformation induced by Rock blockage, indicating that c-Myc is essential, but not sufficient, for Rock-dependent transformation. These results reveal the complexity of the genetic program orchestrated by the Rho subfamily and pinpoint protein networks that mediate different aspects of the malignant phenotype of Rho-transformed cells
Transcriptomal profiling of the cellular transformation induced by Rho subfamily GTPases.
No sample metadata fields
View Samples