refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 209 results
Sort by

Filters

Technology

Platform

accession-icon GSE64905
Gene Expression Data in Pediatric Burkit lymphoma patients
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Gene expression profiling of Peditric Burkitt lymphoma (PBL) patients samples were performed to analyze the comparative genomic signature and to investigate targetable signaling pathways in PBL

Publication Title

Comparative genomic expression signatures of signal transduction pathways and targets in paediatric Burkitt lymphoma: a Children's Oncology Group report.

Sample Metadata Fields

Sex, Disease

View Samples
accession-icon GSE37729
Genome-wide analysis of miRNA-associated transcriptome profiles in multiple cell models
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina humanRef-8 v1.0 expression beadchip

Description

Schizophrenia-associated miRNA were bidirectionally modulated in HEK-293, HeLa, and SH-SY5Y cell models. Results provide important insights into the current understanding of miRNA function in various cellular environments.

Publication Title

Alternative mRNA fates identified in microRNA-associated transcriptome analysis.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP100178
'Placeholder' nucleosomes underlie germline-to-embryo DNA methylation reprogramming [RNA-Seq]
  • organism-icon Danio rerio
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

The function and retention/reprogramming of epigenetic marks during the germline-to-embryo transition is a key issue in developmental and cellular biology, with relevance to stem cell programming and trans-generational inheritance. In zebrafish, DNAme patterns are programmed in transcriptionally-quiescent early cleavage embryos; paternally-inherited patterns are maintained, whereas maternal patterns are reprogrammed to match the paternal pattern. Here we show that a 'placeholder' nucleosome, containing the histone H2A variant H2A.Z(FV) and H3K4me1, occupies virtually all regions lacking DNAme in both sperm and cleavage embryos – residing at promoters encoding housekeeping and early embryonic transcription factors. Upon genome-wide transcriptional onset, genes with the Placeholder become either active H3K4me3-marked or silent H3K4me3/K27me3-marked (bivalent). Importantly, functional perturbation causing Placeholder loss confers DNAme acquisition, whereas acquisition/expansion of Placeholder confers DNA hypomethylation and improper gene activation. Thus, during transcriptionally quiescent stages (gamete-zygote-cleavage), an H2A.Z(FV)/H3K4me1-containing Placeholder nucleosome deters DNAme, poising parental genes for either gene-specific activation or facultative repression. Overall design: Transcript abundance was analyzed for zebrafish sperm, and cleavage stage embryos that were either wild type or mutant for the anp32e gene.

Publication Title

Placeholder Nucleosomes Underlie Germline-to-Embryo DNA Methylation Reprogramming.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP045963
Transcriptome of hepatocellular carcinoma using CAGE
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

An increasing number of non-coding RNAs (ncRNAs) are implicated in various human diseases including cancer; however ncRNA transcriptome of hepatocellular carcinoma (HCC) remains largely unexplored. We use CAGE (Cap Analysis of Gene Expression) to comprehensively map transcription start sites (TSSs) across different etiologies of human HCC as well as mouse HCC, with particular emphasis on ncRNAs distant from protein-coding genes. We find thousands of significantly up-regulated distal ncRNAs in HCC tumors compared to their matched non-tumors, which are as many as protein-coding genes. Moreover, we identify many LTR retroviral promoters activated in HCC tissues and expressed in a subfamily-specific manner, which account for approximately 20% of the up-regulated distal ncRNAs. The transcripts derived from LTRs, determined by 3'' RACE, are multi-exon nuclear ncRNAs typically 0.5-2kb in length. This study sheds light on ncRNA transcriptome of human and mouse HCC. Overall design: Expression profiles using CAGE for 37 mouse HCC. The human data are archived at dbGaP (phs000885.v1.p1). An umbrella BioProject has been created to associate the GEO and dbGaP BioProjects: PRJNA278792

Publication Title

Deficiency of multidrug resistance 2 contributes to cell transformation through oxidative stress.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP162662
The Human Testis Cell Atlas via Single-cell RNA-seq (Infant scRNA-seq data set)
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Human adult spermatogenesis involves a balance of spermatogonial stem cell self renewal and differentiation, alongside complex germline-niche interactions. To better understand, we performed single cell RNA sequencing of ~7000 testis cells from three healthy men of peak reproductive age. Our analyses revealed multiple distinctive transcriptional 'states' of self-renewing and differentiating spermatogonia, the cellular stages of gametogenesis, five niche cells (Leydig, Myoid, Sertoli, Endothelial, macrophage) and insights into germline-niche communication. Spermatogenesis was reconstructed computationally, which identified sequential coding, noncoding, and repeat-element transcriptional signatures. A new, developmentally early and likely quiescent spermatogonial state is identified (GFRA1-/ETV5-/ID4+/UTF1+/FGFR3+). Notably, certain epigenetic features combined with nascent transcription analyses suggest considerable plasticity within certain spermatogonial populations/states. Key findings were validated via RNA and protein staining. Taken together, we provided the first “Cell Atlas” of the adult human testis, and provide multiple new insights into germ cell development and germ cell – niche interaction. Overall design: We isolated single testicular cell from two infant (13 months old). Two technical replicates were performed for each individual.

Publication Title

The adult human testis transcriptional cell atlas.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE74492
Glycosylation-related gene expression in the mucus-secreting gastrointestinal cell line HT29-MTX-E12 in response to infection by Helicobacter pylori
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The HT29 derivative cell line HT29-MTX-E12 (E12) produces an adherent mucus layer predominantly of the gastric MUC5AC mucin when grown on transwells. This mucus layer supports Helicobacter pylori survival in culture. E12 cells were infected with H. pylori and the transcriptome of infected and uninfected E12 were compared. Also included for comparison was the HT29 parent cell line grown on transwells.

Publication Title

Glycosylation-related gene expression in HT29-MTX-E12 cells upon infection by <i>Helicobacter pylori</i>.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP048842
Genome-wide profiling of DNA methylation at single-base resolution based on MeDIP-bisulfite high-throughput sequencing and ridge regression (RNA)
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Unraveling complexity of DNA methylome is essential to decipher DNA methylation mechanism in life. However, this has been subjected to technological constraints to balance between cost and accurate measurement of the DNA methylation level. In this study, by innovatively introducing C-hydroxylmethylated adapters, we have developed MeDIP-Bisulfite sequencing (MB-seq), which could obtain DNA methylome of repertoire CpGs at single-base resolution. We found MB-seq only costs 10% of MethylC-seq, but covers 85% of total CpGs in human genome. Unlike absolute methylation levels determined by MethylC-seq and RRBS, MB-seq presented relative methylation levels that are linearly inflated. This has enlightened us to develop a MB-seq corresponding correction method for methylation level based on ridge regression, which integrates the data of MB-seq and RRBS to predict the methylation level of total 28.2 million CpGs on human genome with high accuracy (Pearson correlation coefficient, PCC=0.90). Moreover, by employing MB-seq, we generated the DNA methylome of an ovarian epithelial cell line (T29) and its oncogenic counterpart (T29H), respectively. After ridge regression, we identified 131,790 differential methylation regions (DMRs) with high accuracy between T29 and T29H, far more than 7,567 obtained from RRBS. Taken together, our result demonstrated that the MB-seq combined with ridge regression is a wide applicable approach for profiling of DNA methylome. Overall design: Total RNAs were extracted from T29 and T29H with RNeasy Mini Kit (QIAGEN, Germany). RNA quality was quality-controlled by Bioanalyser 2100 (RNA nano kits, Agilent). mRNA-Seq libraries were generated from total RNA with polyA+ selection of mRNA using the TruSeq RNA Sample Prep Kit v2 (Illumina, San Diego, CA), and then subjected to transcriptome sequencing on the Illumina Hiseq 2000

Publication Title

MBRidge: an accurate and cost-effective method for profiling DNA methylome at single-base resolution.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP049223
Transcription and Imprinting Dynamics in Developing Postnatal Male Germline Stem Cells
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

Paternal imprinting initiates in primordial germ cells (PGCs), and is considered largely completed at birth. The resulting postnatal spermatogonial stem cells (SSCs) thenself-renew and proliferate to populate the testicular niche, with sexual maturation enabling productive gametogenesis. Overall design: mRNA profiles of neonatal wild type (WT) mice testis were generated by deep sequencing using Illumina HiSeq 2000 Examination of 2 different histone modifications in mouse spermatogonia Please note that ChIPSeq_Kitplus samples are samples isolated with MACS CD117 microbeads from Miltenyi and ChIPSeq_Kitminus are samples that were not positively selected for Kit.

Publication Title

Transcription and imprinting dynamics in developing postnatal male germline stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP064177
Transcriptional regulation by Set1 H3K4 methyltransferase and Jhd2 H3K4 demethylase
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Histone H3K4 methylation is connected to gene transcription from yeast to humans, but its mechanistic role in transcription and chromatin dynamics remains poorly understood. Here, we investigated the functions for Set1 and Jhd2, the sole H3K4 methyltransferase and H3K4 demethylase, respectively, in S. cerevisiae. Our data show that Set1 and Jhd2 predominantly co-regulate transcription. To further understand the role for H3K4 methylation, we overexpressed Flag epitope-tagged SET1-G990E (a dominant hyperactive allele of SET1) in yeast using the constitutive ADH1 promoter (ADH1p). As a control, we also overexpressed Flag epitope-tagged wild type SET1 in yeast. Analysis of gene expression in set1-null, jhd2-null and wild type SET1 or hypeactive SET1-G990E overexpressing mutants together revealed that the transcriptional regulation at a sub-set of genes, inclduing those governing glycogen metabolism and ribosome biogenesis, is highly sensitive to any change (i.e., loss or gain) in H3K4 methylation levels. Overall, we find combined activities of Set1 and Jhd2 via dynamic modulation of H3K4 methylation contribute to positive or negative transcriptional regulation at shared target genes. Overall design: Gene expression changes were generated from five different yeast strains representing wild type control, set1 null and jhd2 null mutants, and wild type SET1 or dominant hyperacive SET1-G990E overexpressing mutants. Three independent biological samples were grown for each strain, total RNA was isolated, libraries were prepared, sequenced, and analyzed separately.

Publication Title

Counteracting H3K4 methylation modulators Set1 and Jhd2 co-regulate chromatin dynamics and gene transcription.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP017670
Next Generation Sequencing Facilitates Quantitative Analysis of CNE1-mock, CNE1-BART1, CNE-BART3, CNE1-BART7 cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

By using NGS-derived retinal transcriptome profiling (RNA-seq) to compare the gene expression profiling between 4 differently treated NPC cells Overall design: Examination of different gene expression in EBV-miRNA-BART1/3/7 lentivirus and their control infected nasopharyngeal carcinoma cells.

Publication Title

Epstein-Barr virus-encoded microRNA BART1 induces tumour metastasis by regulating PTEN-dependent pathways in nasopharyngeal carcinoma.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact