refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 460 results
Sort by

Filters

Technology

Platform

accession-icon GSE24460
Prolonged Drug Selection of Breast Cancer Cells and Enrichment of Cancer Stem Cell Characteristics.
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Background: Cancer stem cells are presumed to have virtually unlimited proliferative and self-renewal abilities and to be highly resistant to chemotherapy, a feature that is associated with overexpression of ATP-binding cassette transporters. We investigated whether prolonged continuous selection of cells for drug resistance enriches cultures for cancer stem-like cells.

Publication Title

Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE13911
Expression data from primary gastric tumors (MSI and MSS) and adjacent normal samples
  • organism-icon Homo sapiens
  • sample-icon 66 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gastric cancers with mismatch repair (MMR) inactivation are characterised by microsatellite instability (MSI). In this study, the transcriptional profile of 38 gastric cancers with and without MSI was analysed.

Publication Title

Genome-wide expression profile of sporadic gastric cancers with microsatellite instability.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE63376
Expression data from mice overexpressing Tcfeb specifically in P14 kidney
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

In order to identify the effects of Tcfeb overexpression on the kidney transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the double heterozygous KSP_CRE/KSP_Tcfeb 14 days old mice as compared to control KSP_CRE mice

Publication Title

Modelling TFE renal cell carcinoma in mice reveals a critical role of WNT signaling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62977
Expression data from mice overexpressing Tcfeb specifically in P0 kidney
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

In order to identify the effects of Tcfeb overexpression on the kidney transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the double heterozygous KSP_CRE/KSP_Tcfeb mice as compared to control KSP_CRE mice

Publication Title

Modelling TFE renal cell carcinoma in mice reveals a critical role of WNT signaling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE139334
Gene expression analysis of fibroblasts of systemic sclerosis patients silenced for lncRNA H19X
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

LncRNA H19X was silienced in dermal fibroblats of systemic sclerosis patients with antisense oligonuclotides. The hypothesis tested in the present study was that H19X is an important factor in the development of TGFb-driven fibrosis. Results provide important information about the role H19X in fibroblasts in particolar on extracellular matrix production and cell cycle regulation.

Publication Title

Long noncoding RNA H19X is a key mediator of TGF-β-driven fibrosis.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon SRP149997
Saccharomyces cerevisiae W303 Raw sequence reads
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Transcriptome study of 2 Saccharomyces cerevisiae W303 derivatives, one carrying GFP (control) and one carrying aSyn-GFP

Publication Title

Different 8-hydroxyquinolines protect models of TDP-43 protein, α-synuclein, and polyglutamine proteotoxicity through distinct mechanisms.

Sample Metadata Fields

Specimen part, Disease, Cell line

View Samples
accession-icon SRP115310
The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases VI
  • organism-icon Mus musculus
  • sample-icon 37 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Microglia play a pivotal role in the maintenance of brain homeostasis, but lose their homeostatic function during the course of neurodegenerative disorders. We identified a specific APOE-dependent molecular signature in microglia isolated from mouse models of amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (SOD1, EAE and APP-PS1) and in microglia surrounding neuritic A?-plaques in human Alzheimer’s disease brain. This is mediated by a switch from a (M0)-homeostatic to (MGnD)-neurodegenerative phenotype following phagocytosis of apoptotic neurons via the TREM2-APOE pathway. TREM2 induces APOE signaling which is a negative regulator of the transcription program in M0-homeostatic microglia. Targeting the TREM2-APOE pathway restores the M0-homeostatic signature of microglia in APP-PS1 and SOD1 mice and prevents from neuronal loss in an acute model of neurodegeneration. In SOD1 mice, TREM2 regulates MGnD in a gender-dependent manner. APOE-mediated MGnD microglia lose their tolerogenic function. Taken together, our work identifies the TREM2-APOE pathway as a major regulator of microglial functional phenotype in neurodegenerative diseases and serves as a novel target to restore homeostatic microglia. Overall design: Illumina NextSeq500 was used to identify disease-associated vs. homeostatic molecular microglia signature in microglia in different disease models and transgenic models. Bulk microglia (1,000 cells/sample) FCRLS+ sorted microglia.

Publication Title

The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP115307
The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases IV
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Microglia play a pivotal role in the maintenance of brain homeostasis, but lose their homeostatic function during the course of neurodegenerative disorders. We identified a specific APOE-dependent molecular signature in microglia isolated from mouse models of amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (SOD1, EAE and APP-PS1) and in microglia surrounding neuritic A?-plaques in human Alzheimer’s disease brain. This is mediated by a switch from a (M0)-homeostatic to (MGnD)-neurodegenerative phenotype following phagocytosis of apoptotic neurons via the TREM2-APOE pathway. TREM2 induces APOE signaling which is a negative regulator of the transcription program in M0-homeostatic microglia. Targeting the TREM2-APOE pathway restores the M0-homeostatic signature of microglia in APP-PS1 and SOD1 mice and prevents from neuronal loss in an acute model of neurodegeneration. In SOD1 mice, TREM2 regulates MGnD in a gender-dependent manner. APOE-mediated MGnD microglia lose their tolerogenic function. Taken together, our work identifies the TREM2-APOE pathway as a major regulator of microglial functional phenotype in neurodegenerative diseases and serves as a novel target to restore homeostatic microglia. Overall design: Illumina NextSeq500 was used to identify disease-associated vs. homeostatic molecular microglia signature in microglia in different disease models and transgenic models. Bulk microglia (1,000 cells/sample) FCRLS+ sorted microglia.

Publication Title

The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP171041
Transcriptome analysis of extruded germline from wild-type C. elegans at different temperatures and under inhbition of germ stem cell proliferation
  • organism-icon Caenorhabditis elegans
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 3000

Description

To assess the mechanism by which adult germ cells induce cbs-1 expression in the intestine at cold temperature, we performed transcriptome analysis of extruded germ lines from wild-type worms upon iff-1 knockdown or temperature increase Overall design: We extruded germ line of iff-1 RNAi-treated worms at 15°C and empty vector (EV) RNAi-treated worms at 20°C and compared to the germ line of EV RNAi-treated worms at 15°C.

Publication Title

Prostaglandin signals from adult germ stem cells delay somatic aging of <i>Caenorhabditis elegans</i>.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE67527
Gene expression comparison between fibroblasts samples of control and SPOAN affected patients
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Objective: Analyze expression patterns of genes located at linkage region of SPOAN syndrome (11q12-13), in order to identify genes differentially expressed in samples of SPOAN individuals compared to healthy controls.

Publication Title

Overexpression of KLC2 due to a homozygous deletion in the non-coding region causes SPOAN syndrome.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact