refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 460 results
Sort by

Filters

Technology

Platform

accession-icon GSE54316
Expression data of human fetal liver hematopoietic stem and progenitors cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

GPI-80 defines self-renewal ability in hematopoietic stem cells during human development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54314
Expression data of human fetal liver hematopoietic stem and progenitors cells [Set 1]
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Advances in pluripotent stem cell and reprogramming technologies have given hope of generating hematopoietic stem cells (HSC) in culture. To succeed, greater understanding of the self-renewing HSC during human development is required. We discovered that glycophosphatidylinositol-anchored surface protein GPI-80 (Vanin 2) defines a distinct subpopulation of human fetal hematopoietic stem/progenitor cells (HSPC) with self-renewal ability. CD34+CD90+CD38-GPI-80+ HSPC were the sole population that maintained proliferative potential and undifferentiated state in bone marrow stroma co-culture, and engrafted in immunodeficient mice. GPI-80 expression also enabled tracking of HSC migration between human fetal hematopoietic niches. The most highly enriched surface protein in GPI-80+ HSPC as compared to their progeny was Integrin alpha-M (ITGAM), which in leukocytes cooperates with GPI-80 to support migration. Knockdown of either GPI-80 or ITGAM was sufficient to perturb undifferentiated HSPC in stroma co-culture. These findings indicate that human fetal HSC utilize common mechanisms with leukocytes for cell-cell interactions governing HSC self-renewal.

Publication Title

GPI-80 defines self-renewal ability in hematopoietic stem cells during human development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54315
Expression data of human fetal liver hematopoietic stem and progenitors cells [Set 2]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Advances in pluripotent stem cell and reprogramming technologies have given hope of generating hematopoietic stem cells (HSC) in culture. To succeed, greater understanding of the self-renewing HSC during human development is required. We discovered that glycophosphatidylinositol-anchored surface protein GPI-80 (Vanin 2) defines a distinct subpopulation of human fetal hematopoietic stem/progenitor cells (HSPC) with self-renewal ability. CD34+CD90+CD38-GPI-80+ HSPC were the sole population that maintained proliferative potential and undifferentiated state in bone marrow stroma co-culture, and engrafted in immunodeficient mice. GPI-80 expression also enabled tracking of HSC migration between human fetal hematopoietic niches. The most highly enriched surface protein in GPI-80+ HSPC as compared to their progeny was Integrin alpha-M (ITGAM), which in leukocytes cooperates with GPI-80 to support migration. Knockdown of either GPI-80 or ITGAM was sufficient to perturb undifferentiated HSPC in stroma co-culture. These findings indicate that human fetal HSC utilize common mechanisms with leukocytes for cell-cell interactions governing HSC self-renewal.

Publication Title

GPI-80 defines self-renewal ability in hematopoietic stem cells during human development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE76685
Medial HOXA gene expression is a landmark for the definitive haematopoietic fate and a prerequisite for human HSC function
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Medial HOXA genes demarcate haematopoietic stem cell fate during human development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE64865
Expression data from immunophenotypic HSPCs isolated from different stages of human hematopoiesis, in vivo and in vitro
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The derivation of functional, transplantable HSCs from an pluripotent stem cells in vitro holds great promise for clinical therapies, but is unachieved. In order to achieve full functionality of HSCs, it is vital to determine the extent to which PSCs can currently be differentiated to the HSC program in vitro and identify the remaining dysregulated genetic pathways.

Publication Title

Medial HOXA genes demarcate haematopoietic stem cell fate during human development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP068279
RNA-seq expression data from EB-HSPC after AM580 treatment compated to DMSO-trated and FL-HSPCs
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

RA signalling regulated endothelial to hematopoietic transition and HSC generation. Overall design: EB- or FL-derived HSPC were profiled before (d0) or after (d6) 6 days of treatment with 0.2uM AM580 on OP9, and after 6 additional days of expandion of OP9 (d12) without treatment.

Publication Title

Medial HOXA genes demarcate haematopoietic stem cell fate during human development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP068281
RNA-seq expression data from EB-HSPCs after HOXA7 overexpression
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

HOXA7 regulates FL-HSPC self-renewal in vitro and in vivo. We profiled EB-HSPCs after HOXA7 overexpression (EB-HOXA7), or with a control vector (EB-CTR), to assess the gene expression programs regulated by HOXA7. Overall design: CD34+CD38-CD43+CD90+ HSPCs were infected with lentiviral FUGW vector either empty (FUGW-GFP) or encoding HOXA7(FUGW-GFP-HOXA7) protein. Cells were expanded on op9 for 15 days and than sorted for GFP HSPC immunophenotype.

Publication Title

Medial HOXA genes demarcate haematopoietic stem cell fate during human development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP074298
Differentiation of human embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aorta-gonad-mesonephros
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The production of definitive haematopoietic stem/progenitor cells from human pluripotent stem cells (hPSCs) remains a significant challenge. Using reporter lines to track the endothelial (SOX17) to haematopoietic (RUNX1C) transition, we found that hPSC differentiated in growth factor supplemented serum free medium generated RUNX1C+CD34+ clonogenic cells that homed to the bone marrow, but did not engraft. Compared to repopulation-competent cord blood CD34+ cells, RUNX1C+CD34+ progenitors lacked HOXA gene expression, indicating incorrect mesoderm patterning. This deficiency was ameliorated by a timed pulse of WNT activation combined with ACTIVIN antagonism. Significantly, these HOXA+ cultures now formed complex SOX17+ vessels that produced fetal liver-like haematopoietic cells, similar to the human aorta-gonad-mesonephros (AGM). Comparison of transcriptional profiles of these nascent haematopoietic stem/progenitors with cells isolated from human AGM confirmed significant similarities, consistent with the assignment of our in vitro generated cells to the definitive human haematopoietic lineage. Our findings argue that HOXA codes established early in differentiation predict cellular potential and provide correct cell patterning for the specification of definitive haematopoietic lineages from hPSCs. Overall design: mRNA profiles of 26 samples were obtained for 5 different cell populations and 2 different treatments.

Publication Title

Differentiation of human embryonic stem cells to HOXA<sup>+</sup> hemogenic vasculature that resembles the aorta-gonad-mesonephros.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE5580
Cell Specific Expression & Pathway Analyses Reveal Novel Alterations in Trauma-Related Human T-Cell & Monocyte Pathways
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Monitoring genome-wide, cell-specific responses to human disease, although challenging, holds great promise for medicines future. Patients with injury severe enough to develop multiple organ dysfunction syndrome (MODS) are known to have multiple immune derangements, including T-cell apoptosis and anergy combined with depressed monocyte antigen presentation. Genome-wide expression analysis of highly-enriched circulating leukocyte subpopulations, combined with cell-specific pathway analyses, offers a previously unavailable opportunity to discover novel leukocyte regulatory networks in critically injured patients. Severe injury induced significant changes in the T-cell, monocyte, and total leukocyte transcriptome, with only 12% of these genomic changes common to all three cell populations. T-cell-specific pathway analyses identified increased gene expression of several novel inhibitory receptors (PD-1, CD152, NRP-1, Lag3), and concomitant decreases in stimulatory receptors (CD28, CD4, IL-2Ralpha). Functional analysis of T-cells and monocytes confirmed reduced T-cell proliferation and increased cell surface expression of negative signaling receptors paired with decreased monocyte costimulation ligands. Thus, genome-wide expression from highly-enriched cell populations combined with knowledge-based pathway analyses leads to the identification of novel regulatory networks differentially expressed in injured patients. Importantly, application of cell separation, genome-wide expression, and cell specific pathway analyses can be used to discover novel pathway alterations in human disease.

Publication Title

Cell-specific expression and pathway analyses reveal alterations in trauma-related human T cell and monocyte pathways.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE3284
A network-based analysis of systemic inflammation in humans
  • organism-icon Homo sapiens
  • sample-icon 110 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Oligonucleotide and complementary DNA microarrays are being used to subclassify histologically similar tumours, monitor disease progress, and individualize treatment regimens. However, extracting new biological insight from high-throughput genomic studies of human diseases is a challenge, limited by difficulties in recognizing and evaluating relevant biological processes from huge quantities of experimental data. Here we present a structured network knowledge-base approach to analyse genome-wide transcriptional responses in the context of known functional interrelationships among proteins, small molecules and phenotypes. This approach was used to analyse changes in blood leukocyte gene expression patterns in human subjects receiving an inflammatory stimulus (bacterial endotoxin). We explore the known genome-wide interaction network to identify significant functional modules perturbed in response to this stimulus. Our analysis reveals that the human blood leukocyte response to acute systemic inflammation includes the transient dysregulation of leukocyte bioenergetics and modulation of translational machinery. These findings provide insight into the regulation of global leukocyte activities as they relate to innate immune system tolerance and increased susceptibility to infection in humans.

Publication Title

A network-based analysis of systemic inflammation in humans.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact