refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1223 results
Sort by

Filters

Technology

Platform

accession-icon GSE22406
Heterogeneity in MYC-Induced Mammary Tumors Determines Outcomes Following Loss of Myc Activity
  • organism-icon Mus musculus
  • sample-icon 75 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

We used microarrays to compare gene expression profiles between mouse mammary tumors initiated by Myc to those that have escaped Myc oncogene dependence.

Publication Title

Heterogeneity in MYC-induced mammary tumors contributes to escape from oncogene dependence.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15904
Genetic Heterogeneity in Mouse Mammary Tumors
  • organism-icon Mus musculus
  • sample-icon 126 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Human cancers result from a complex series of genetic alterations resulting in heterogeneous disease states. Dissecting this heterogeneity is critical for understanding underlying mechanisms and providing opportunities for therapeutics matching the complexity. Mouse models of cancer have generally been employed to reduce this complexity and focus on the role of single genes. Nevertheless, our analysis of tumors arising in the MMTV-Myc model of mammary carcinogenesis reveals substantial heterogeneity, seen in both histological and expression phenotypes. One contribution to this heterogeneity is the substantial frequency of activating Ras mutations, the frequency of which can be changed by alterations in Myc. Additionally, we show that these Myc-induced mammary tumors exhibit even greater heterogeneity, revealed by distinct histological subtypes as well as distinct patterns of gene expression, than many other mouse models of tumorigenesis. Two of the major histological subtypes are characterized by differential patterns of cellular signaling pathways, including B-Catenin and Stat3 activities. We also demonstrate the predictive nature of this approach though examining metastatic potential. Together, these data reveal that a combination of histological and genomic analyses can uncover substantial heterogeneity in mammary tumor formation and therefore highlight aspects of tumor phenotype not evident in the population as a whole.

Publication Title

Genetic heterogeneity of Myc-induced mammary tumors reflecting diverse phenotypes including metastatic potential.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE59874
PIK3CA(H1047R)-evoked breast tumorigenesis
  • organism-icon Mus musculus
  • sample-icon 49 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE40875
Early parity-induced gene expression in mouse mammary cell subtypes
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This study examined the effect of early pregnancy on the gene expression profiles of stromal and various epithelial mammary cell subpopulations in mice.

Publication Title

PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE59872
Gene expression profiling of Lgr5-creERT2/PIK3CA H1047R and K8-creERT2/PIK3CA H1047R-evoked mammary tumors
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This study examined the gene expression profile of mammary tumors derived from Lgr5- and K8-positive cell-of-origins

Publication Title

PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE59870
Gene expression profiling of preneoplastic Lgr5-creERT2/PIK3CAH1047R mammary subsets
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This study examined the effect of mutant PIK3CAH1047R expression in mammary subsets of preneoplastic mammary glands from Lgr5-creERT2/PIK3CA H1047R mice

Publication Title

PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE47697
ETV4 promotes metastasis in response to combined activation of PI3kinase and RAS signaling in a mouse model of advanced prostate cancer
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of the transcriptome of mouse models of prostate cancer. NP (Nkx3.1CreERT2/+; Ptenfloxed/floxed) mice develop non-metastatic tumors while NPK (Nkx3.1CreERT2/+; Ptenfloxed/floxed; KrasG12D/+) mice develop metastatic tumors

Publication Title

ETV4 promotes metastasis in response to activation of PI3-kinase and Ras signaling in a mouse model of advanced prostate cancer.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
accession-icon GSE65411
Gene expression profiling of preneoplastic K8-creERT2/PIK3CAH1047R mammary subsets
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This study examined the effect of mutant PIK3CAH1047R expression in mammary subsets of preneoplastic mammary glands from K8-creERT2/PIK3CA H1047R mice

Publication Title

PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon GSE31942
Expression data from Estrogen Receptor alpha-positive Progesterone Receptor-positive Mammary Tumors in STAT1-/- Mice.
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Aged STAT1-/- female mice spontaneously develop ERa+ PR+ mammary tumors that exhibit strikingly similar hormone-sensitivity and -dependency as human ERa+ luminal breast cancers.

Publication Title

STAT1-deficient mice spontaneously develop estrogen receptor α-positive luminal mammary carcinomas.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14226
The Snf1-Related Kinase, Hunk, Is Essential for Mammary Tumor Metastasis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

We previously identified a novel SNF1/AMPK-related protein kinase, Hunk, from a mammary tumor arising in an MMTV-neu transgenic mouse. The function of this kinase is unknown. Using targeted deletion in mice, we now demonstrate that Hunk is required for the metastasis of c-myc-induced mammary tumors, but is dispensable for normal development. Reconstitution experiments revealed that Hunk is sufficient to restore the metastatic potential of Hunk-deficient tumor cells, as well as defects in migration and invasion, and does so in a manner that requires its kinase activity. Consistent with a role for Hunk in the progression of human cancers, the human homologue of Hunk is overexpressed in aggressive subsets of carcinomas of the ovary, colon, and breast. In addition, a murine gene expression signature that distinguishes Hunk-wild type from Hunk-deficient mammary tumors predicts clinical outcome in women with breast cancer. Together, these findings establish a role for Hunk in metastasis and an in vivo function for this kinase.

Publication Title

The Snf1-related kinase, Hunk, is essential for mammary tumor metastasis.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact