refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 580 results
Sort by

Filters

Technology

Platform

accession-icon GSE62251
Inhibition of the autocrine loop IL6-JAK2-STAT3-Calprotectin as targeted therapy for HR-/HER2+ breast cancers
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Inhibition of the autocrine IL-6-JAK2-STAT3-calprotectin axis as targeted therapy for HR-/HER2+ breast cancers.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE62250
Gene expression profiling of ErbB2-engineered MCF10A and WT cells
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Gene expression profiling of ErbB2-engineered MCF10A and WT cells in 2D and 3D culture

Publication Title

Inhibition of the autocrine IL-6-JAK2-STAT3-calprotectin axis as targeted therapy for HR-/HER2+ breast cancers.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE53202
Cross-species analysis of genome-wide regulatory networks identifies a synergistic dependency between FOXM1 and CENPF that drives prostate cancer malignancy
  • organism-icon Mus musculus
  • sample-icon 384 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of the transcriptome of mouse models of prostate cancer to assemble a mouse prostate cancer interactome.

Publication Title

Cross-species regulatory network analysis identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE33562
Preclinical analysis of the gamma secretase inhibitor PF-030840214 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic cancer frequently associated with activating mutations in NOTCH1. Early studies identified NOTCH1 as an attractive therapeutic target for the treatment of T-ALL through the use of gamma-secretase inhibitors (GSIs). Here, we characterized the interaction between PF-03084014, a clinically-relevant GSI, and dexamethasone in preclinical models of glucocorticoid-resistant T-ALL. Combination treatment of the GSI PF-03084014 with glucocorticoids induced a synergistic antileukemic effect in human T-ALL cell lines and primary human T-ALL patient samples. Molecular characterization of the response to PF-03084014 plus glucocorticoids through gene expression profiling revealed transcriptional upregulation of the glucocorticoid receptor as the mechanism mediating the enhanced glucocorticoid response. Moreover, treatment with PF-03084014 and glucocorticoids in combination was highly efficacious in vivo, with enhanced reduction of tumor burden in a xenograft model of T-ALL. Finally, glucocorticoid treatment was highly effective at reversing PF-03084014-induced gastrointestinal toxicity via inhibition of goblet cell metaplasia. These results suggest that combination of PF-03084014 treatment with glucocorticoids may be well-tolerated and highly active for the treatment of glucorticoid-resistant T-ALL.

Publication Title

Preclinical analysis of the γ-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE82179
Ornithine decarboxylase is sufficient for prostate tumorigenesis via androgen receptor signaling
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Ornithine decarboxylase is sufficient for prostate tumorigenesis via androgen receptor signaling

Publication Title

Ornithine Decarboxylase Is Sufficient for Prostate Tumorigenesis via Androgen Receptor Signaling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP135665
Arabidopsis SE coordinates histone methyltransferases ATXR5/6 and RNA processing factor RDR6 to regulate transposon expression [RNA-Seq]
  • organism-icon Arabidopsis thaliana
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We performed Illumina sequencing of ribosome depletion RNA libraries prepared from 10-day-old seedlings in Arabidopsis. SE is required for transposon reactivation in atxr5 atxr6 mutant. Overall design: Ribosome depletion RNA profiling by high throughput sequencing.

Publication Title

Arabidopsis Serrate Coordinates Histone Methyltransferases ATXR5/6 and RNA Processing Factor RDR6 to Regulate Transposon Expression.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE36135
Expression data from prostate cancer Docetaxel-resistant cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Docetaxel is the standard first line therapy for hormone-refractory prostate cancer patients. Here we generated models of Docetaxel resistance in prostate cancer cells to study the molecular pathways that drive the acquisition of resistance to this therapy. We used microarrays to detail the global program of gene expression underlying the acquisition of Docetaxel resistance in prostate cancer cells.

Publication Title

Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE69252
Gene expression profiling in NK cells of patients infected with Leishmania mexicana
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The aim of this study was to identify differences in the NK-cell response towards Leishmania mexicana lipophosphoglycan (LPG) between patients with localized (LCL) and diffuse (DCL) cutaneous leishmaniasis through gene expression profiling, in an attempt to pinpoint alterations in the signaling pathways responsible for the NK-cell dysfunction in patients with DCL.

Publication Title

Down-Regulation of TLR and JAK/STAT Pathway Genes Is Associated with Diffuse Cutaneous Leishmaniasis: A Gene Expression Analysis in NK Cells from Patients Infected with Leishmania mexicana.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE34514
Differential RNAs in the sperm cells of asthenozoospermic patients
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Alterations in the presence of sperm RNAs have been identified using microarrays in teratozoospermic (abnormal morphology) or other types of infertile patients. However, so far no studies had been reported on the sperm RNA content using microarrays in asthenozoospermic patients (low motility).

Publication Title

Differential RNAs in the sperm cells of asthenozoospermic patients.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE69832
Age gene expression in Healthy leukocytes
  • organism-icon Homo sapiens
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Both cellular senescence and organismic aging are known to be dynamic processes that start early in life and progress constantly during the whole life of the individual. In this work, with the objective of identifying signatures of age-related progressive change at the transcriptomic level, we have performed a whole-genome gene expression analysis of peripheral blood leukocytes in a group of healthy individuals with ages ranging from 14 to 93 years. A set of genes with progressively changing gene expression (either increase or decrease with age) has been identified and contextualized in a coexpression network. A modularity analysis has been performed on this network and biological-term and pathway enrichment analyses have been used for biological interpretation of each module. In summary, the results of the present work reveal the existence of a transcriptomic component that shows progressive expression changes associated to age in peripheral blood leukocytes, highlighting both the dynamic nature of the process and the need to complement young vs. elder studies with longitudinal studies that includes middle aged individuals. From the transcriptional point of view, immunosenescence seems to be occurring from a relatively early age, at least from the late 20s/early 30s, and the 49 56 y/o age-range appears to be critical. In general, the genes that, according to our results, show progressive expression changes with aging are involved in pathogenic/cellular processes that have classically been linked to aging in humans: cancer, immune processes and cellular growth vs. maintenance.

Publication Title

Age gene expression and coexpression progressive signatures in peripheral blood leukocytes.

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact