refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 68 results
Sort by

Filters

Technology

Platform

accession-icon SRP044301
HSA21 Single-minded 2 (Sim2) binding sites co-localize with super-enhancers and pioneer transcription factors in pluripotent mouse ES cells [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Down syndrome (DS) results from trisomy of chromosome 21 (HSA21). Some DS phenotypes may be directly or indirectly related to the increased expression of specific HSA21 genes, in particular those encoding transcription factors. The HSA21 encoded Single-minded 2 (SIM2) transcription factor has key neurological functions and is a good candidate to be involved in the cognitive impairment of DS. ChIP-sequencing was used to map SIM2 binding in mouse embryonic stem cells and has revealed 1229 high-confidence SIM2-binding sites. Analysis of the SIM2 target genes confirmed the importance of SIM2 in developmental and neuronal processes and indicated that SIM2 may be a master transcription regulator. Indeed, SIM2 DNA binding sites share sequence specificity and overlapping domains of occupancy with master transcription factors such as SOX2, OCT4, NANOG or KLF4. The association between SIM2 and these pioneer factors is supported by the finding that SIM2 can be co-immunoprecipitated with SOX2, OCT4, NANOG or KLF4. Furthermore, the binding of SIM2 marks a particular sub-category of enhancers known as super-enhancers. These regions are characterized by typical DNA modifications and Mediator co-occupancy (MED1 and MED12). Altogether, we provide evidence that SIM2 binds a specific set of enhancer elements thus explaining how SIM2 can regulate its gene network in DS neuronal features. Overall design: RNA-Seq analysis in Sim2 expressing cells (3 replicates A6, B8, C4) and EB3 control cells (3 replicates)

Publication Title

HSA21 Single-Minded 2 (Sim2) Binding Sites Co-Localize with Super-Enhancers and Pioneer Transcription Factors in Pluripotent Mouse ES Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE28997
Function-based discovery of significant transcriptional temporal patterns in insulin-stimulated muscle cells
  • organism-icon Rattus norvegicus
  • sample-icon 53 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Background: Insulin's effect on protein synthesis (translation of transcripts) and post-translational modifications, especially those involving reversible modifications such as phosphorylation of various signaling proteins, are extensively studied. On the other hand, insulin's effect on the transcription of genes, especially of transcriptional temporal patterns, is not well investigated in the literature.

Publication Title

Function-based discovery of significant transcriptional temporal patterns in insulin stimulated muscle cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE19836
A mouse Embryonic Stem Cell Bank for inducible overexpression of human chromosome 21 genes
  • organism-icon Mus musculus
  • sample-icon 120 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The HSA21-mES Cell Bank includes, in triplicate clones, thirty-two murine orthologs of HSA21 genes, which can be overexpressed in an inducible manner using the Tet-off system integrated in the Rosa26 locus.

Publication Title

A mouse embryonic stem cell bank for inducible overexpression of human chromosome 21 genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12345
Global gene expression profiling of human pleural mesotheliomas
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The goal of our study was to molecularly dissect mesothelioma tumor pathways by mean of microarray technologies in order to identify new tumor biomarkers, that could be used as early diagnostic markers and possibly as specific molecular therapeutic targets. We performed Affymetrix U133A plus 2.0 microarray analysis comparing 9 human pleural mesotheliomas with 4 normal pleural specimen. Stringent statistical feature selection detected a set of differentially expressed genes that were further evaluated to identify potential biomarkers to be used in early diagnostics. Selected genes were confirmed by RT-PCR. As reported by other mesothelioma profiling studies, most of genes are involved in G2/M transition. Our list contains several genes previously described as prognostic classifier. Furthermore, we found novel genes never associated before to mesothelioma and could be involved in tumor progression. Notable, the identification of MMP-14, a member of matrix metalloproteinase family. This molecule has been described as a new disease marker and could be used as biomarker also for mesothelioma early diagnosis and prognosis and that can be viewed as new and effective therapeutic target to test.

Publication Title

Global gene expression profiling of human pleural mesotheliomas: identification of matrix metalloproteinase 14 (MMP-14) as potential tumour target.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP078054
Vitamin C and L-Proline antagonistic effects capture alternative states in the pluripotency continuum [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, NextSeq 500

Description

Samples 1-4 report RNA-seq transcriptome profiling of the L-Proline- (L-Pro) and bFgf/ActivinA- (F/A) derived mCherry+/eGFP+ (yellow) ESC population, using the Illumina HiSeq platform. Whole-genome expression revealed that more than 1000 genes were significantly deregulated in L-Pro- and F/A-induced cells compared to control (mCherry+/eGFP- red cells) and the two population shared up to 75% of deregulated genes with the same deregulation trend. Specifically, the pluripotency-associated genes were downregulated either at similar level (Nanog, Klf2, Klf4 and Gbx2) or at lower levels (up to 10 times) (Dppa 2, 3, 4, 5a, Rex1, Esrrb) in F/A- compared to L-Pro-treated cells. Interestingly, mesendodermal-related genes (e.g. Brachyury, Cer1, Dkk1, Eomes, Foxa2, and Sox17) were induced in both conditions but at significant higher levels in F/A- compared to L-Pro-treated cells. The transcriptome analysis of mCherry+/eGFP+ (yellow) cells supported the idea that L-Pro mimics F/A in inducing a naïve to primed transition, and suggested that it exerted a milder (weaker) effect. Samples 5-14 report RNA-seq transcriptome profiling of the mir-290_mCherry/mir-302_eGFP dual reporter ESCs (DRESCs) bulk culture, grown in FBS/LIF ± VitaminC (VitC) and L-Proline (L-Pro) and compared them to the standard naive/2i and primed/bFgf/ActivinA-EpiSCs (F/A), using the Illumina HiSeq platform. Whole-genome expression identified around 7900 deregulated genes in the different conditions, (fold change=2 and pvalue<0.05). Principal component analysis (PCA) placed VitC between 2i and untreated control, and L-Pro between control and F/A. Accordingly, a set of pluripotency-associated genes was expressed at higher level in 2i and VitC conditions, while downregulated in L-Pro and F/A, compared to control. Conversely, priming markers were downregulated in 2i and VitC and upregulated in L-Pro and F/A compared to control The transcriptome analysis supported that VitC- and L-Pro captured alternative pluripotency states that can be likely placed between naïve/2i and primed/F/A states. Overall design: RNA-seq profiling of ESCs grown in FBS/LIF ± VitC, 2i, L-Pro or F/A, using the Illumina HiSeq platform

Publication Title

Vitamin C and l-Proline Antagonistic Effects Capture Alternative States in the Pluripotency Continuum.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE66416
Differential gene expression of periostin-overexpressing MC3T3-E1 cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Periostin participates in different processes involved in connective tissue homeostasis. It is also involved in repairment of damaged tissues. We used the osteoblast murine cell line MC3T3-E1 cell line to show how overexpresion of periostin is able to increase their adhesion properties while diminishing their migration capacity. By differential gene expression we evaluated putative targets involved in those cellular properties.

Publication Title

Role of Periostin in Adhesion and Migration of Bone Remodeling Cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE7458
Transcriptional Profiles of Human Epithelial Cells in Response to Heat
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

We hypothesized that broad-scale expression profiling would provide insight into the regulatory pathways that control gene expression in response to stress, and potentially identify novel heat-responsive genes. HEp2 cells were heated at 37 to 43 C for 60 min to gauge the heat shock response, using as a proxy inducible HSP-70 quantified by western blot analysis. Based on these results, microarray experiments were conducted at 37, 40, 41, 42 and 43C (3 replicates/temperature x 5 groups = 15 U95Aver2 GeneChips). Using linear modeling, we compared the sets of microarrays at 40, 41, 42 and 43C with the 37C baseline temperature and took the union of the genes exhibiting differential gene expression signal to create two sets of heat shock response genes, each set reflecting either increased or decreased RNA abundance. Leveraging human and mouse orthologous alignments, we used the two lists of co-expressed genes to predict transcription factor binding sites in silico, including those for heat shock factor 1 (HSF1) and heat shock factor 2 (HSF2) transcription factors. We discovered HSF1 and HSF2 binding sites in 15 genes not previously associated with the heat shock response. We conclude that microarray experiments coupled with upstream promoter analysis can be used to identify novel genes that respond to heat shock. Additional experiments are required to validate these putative heat shock proteins and facilitate a deeper understanding of the mechanisms involved during the stress response.

Publication Title

Transcriptional profiles of human epithelial cells in response to heat: computational evidence for novel heat shock proteins.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE42618
pp71-stimulated genes in U87 stable cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Glioblastoma multiforme (GBM) is a highly malignant primary central nervous neoplasm characterized by tumor cell invasion, robust angiogenesis, and a mean survival of 15 months. Human cytomegalovirus (HCMV) infection is present in > 90% of GBMs, although the role the virus plays in GBM pathogenesis is unclear. We report here that a majority of human GBM tumors express HCMV pp71, which has previously been found to promote cell cycle progression and viral replication, and that pp71 is expressed preferentially within the CD133+ cancer stem cell-like subpopulation. Overexpression of pp71 in adult neural precursor cells (NPCs) resulted in a dramatic induction of stem cell factor (SCF) gene expression, which has been identified as an important pro-angiogenic factor in GBM.

Publication Title

Cytomegalovirus pp71 protein is expressed in human glioblastoma and promotes pro-angiogenic signaling by activation of stem cell factor.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP092182
Transcriptomic evaluation of CD4+CD62L-CD44+FoxP3-CD45RbLo (RbLo TEM) versus CD4+CD62L+CD44-FoxP-CD45RbHi (RbHi TN) cells following activation
  • organism-icon Mus musculus
  • sample-icon 31 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Deep sequencing of splenic RbLo TEM and RbHi TN cells 72 hours following anti-CD3 stimulation. Overall design: mRNA was collected from snap-frozen cells at 72 hours post stimulation.

Publication Title

CD45Rb-low effector T cells require IL-4 to induce IL-10 in FoxP3 Tregs and to protect mice from inflammation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE111443
Expression data from Arabidopsis shoots and roots
  • organism-icon Arabidopsis thaliana
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Regulation of genes in shoots and roots and Arabidopsis in response to Zn-deficiency in wild-type and hma2 hma4 mutants plants

Publication Title

Systemic Upregulation of MTP2- and HMA2-Mediated Zn Partitioning to the Shoot Supplements Local Zn Deficiency Responses.

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact