refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 123 results
Sort by

Filters

Technology

Platform

accession-icon GSE45987
A transcriptomic analysis of a Caucasian family cohort of high risks for the metabolic syndrome
  • organism-icon Homo sapiens
  • sample-icon 298 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A comprehensive analysis of adiponectin QTLs using SNP association, SNP cis-effects on peripheral blood gene expression and gene expression correlation identified novel metabolic syndrome (MetS) genes with potential role in carcinogenesis and systemic inflammation.

Sample Metadata Fields

Sex, Age, Race

View Samples
accession-icon GSE52721
Effects of O-GlcNAc modification on gene expression using O-GlcNAcase deleted Mouse Embryonic Fibroblast cells.
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Single O-GlcNAc modification orchestrate by O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA alias MGEA5) enzymes, affects signal transduction and gene expression by chromatin modulation. We developed Oga deleted MEF (mouse embryonic fibroblast) cells to investigate effects of O-GlcNAc modification in mice. RNA isolated from Mouse Embryonic Fibroblast cells generated from Oga Knock out (KO) Heterozygous (Het) and wild type (WT) cells and subjected to microarray analysis.

Publication Title

Conditional knock-out reveals a requirement for O-linked N-Acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE26483
Gene expression data from treated LNCaP prostate cells.
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Prostate cancer is dependent on androgen receptor (AR) signaling at all stages of the disease and cyclin D1 has been shown to negatively modulate the expression of the AR-dependent gene prostate specific antigen (KLK3/PSA).

Publication Title

Cyclin D1 is a selective modifier of androgen-dependent signaling and androgen receptor function.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE44418
Aberrant BAF57 Signaling Facilitates Pro-metastatic Phenotypes
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

BAF57, a component of the SWI/SNF chromatin remodeling complex conglomerate,modulates androgen receptor activity to promote prostate cancer. However the molecular consequences of tumor associated BAF57 elevation have remianed undefined in advanced disease such as castration resistant prostate cancer and/or metastasis

Publication Title

Aberrant BAF57 signaling facilitates prometastatic phenotypes.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE69754
VEGF blockade enhances the antitumor effect of BRAFV600E inhibition
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip, Illumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

VEGF blockade enhances the antitumor effect of BRAFV600E inhibition.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE69744
VEGF blockade enhances the antitumor effect of BRAFV600E inhibition (mouse)
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

In this work we investigated the combined effects of the BRAF inhibition and of the VEGF blockade in a preclinical model of melanoma. The purpose of this dataset was to examine the transcriptional responses of a A375 xenograft model to PLX472 and bevacizumab, either as single agents or as combination therapy. We performed species-specific analysis of gene expression to discriminate the effects of the different therapeutic regimens on tumor cells (human) and stromal microenvironment (mouse). Here, Illumina Mouse BeadChips were used to profile the transcriptome after 12 days treatment. We reported that dispensing the dual treatment is more efficient than the single compounds and the occurrence of resistance by modifying the tumor genetic programs regulating myeloid cells recruitment and extracellular matrix remodeling.

Publication Title

VEGF blockade enhances the antitumor effect of BRAFV600E inhibition.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE69742
VEGF blockade enhances the antitumor effect of BRAFV600E inhibition (human)
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip, Illumina HumanHT-12 V4.0 expression beadchip

Description

In this work we investigated the combined effects of the BRAF inhibition and of the VEGF blockade in a preclinical model of melanoma. The purpose of this dataset was to examine the transcriptional responses of a A375 xenograft model to PLX472 and bevacizumab, either as single agents or as combination therapy. We performed species-specific analysis of gene expression to discriminate the effects of the different therapeutic regimens on tumor cells (human) and stromal microenvironment (mouse). Here, Illumina Human BeadChips were used to profile the transcriptome after 12 days treatment. We reported that dispensing the dual treatment is more efficient than the single compounds and the occurrence of resistance by modifying the tumor genetic programs regulating myeloid cells recruitment and extracellular matrix remodeling.

Publication Title

VEGF blockade enhances the antitumor effect of BRAFV600E inhibition.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE30488
Expression data from E2f7/E2f8/E2f3a null placentas and embryos
  • organism-icon Mus musculus
  • sample-icon 52 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To understand the underlying cause and mechanisms of embryonic lethality observed in combined loss of E2f7 and E2f8, we compared global gene expression profiles of wild type, germline deleted and sox2-Cre/Cyp19-Cre deleted embryos and placentas.

Publication Title

Atypical E2F repressors and activators coordinate placental development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE88896
TFEB controls vascular development by regulating the proliferation of endothelial cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The role of the transcription factor EB (TFEB) in the control of cellular functions, including in vascular bed, is mostly thought to be the regulation of lysosomal biogenesis and autophagic flux. While this is its best-known function, we report here the ability of TFEB to orchestrate a non-canonical program involved in the control of cell-cycle and VEGFR2 pathway in the developing vasculature. In endothelial cells, TFEB deletion halts proliferation by inhibiting the CDK4/Rb pathway, which regulates the cell cycle G1-S transition. In an attempt to overcome this limit, cells compensate by increasing the amount of VEGFR2 on the plasma membrane through a microRNA-mediated mechanism and the control of its membrane trafficking. TFEB transactivates the miR-15a/16-1 cluster, which limits the stability of the VEGFR2 transcript, and negatively modulates the expression of MYO1C, which regulates VEGFR2 delivery to the cell surface. In TFEB knocked-down cells, the reduced and increased amount respectively of miR-15a/16-1 and MYO1C result in the overexpression on plasmamembrane of VEGFR2, which however shows low signaling strength. Using endothelial loss-of-function Tfeb mouse mutants, we present evidence of defects in fetal and newborn mouse vasculature caused by the reduced endothelial proliferation and by the anomalous function of VEGFR2 pathway. Thus, this study revealed a new and unreported function of TFEB that expands its role beyond the regulation of autophagic pathway in the vascular system.

Publication Title

TFEB controls vascular development by regulating the proliferation of endothelial cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP032812
Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants (RNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Chromatin-based functional genomic analyses and genomewide association studies (GWASs) together implicate enhancers as critical elements influencing gene expression and risk for common diseases. Here, we performed systematic chromatin and transcriptome profiling in human pancreatic islets. Integrated analysis of islet data with those generated by the ENCODE project in nine cell types identified specific and significant enrichment of type 2 diabetes and related quantitative trait GWAS variants in islet enhancers. Our integrated chromatin maps reveal that most enhancers are short (median = 0.8 kb). Each cell type also contains a substantial number of more extended (=3 kb) enhancers. Interestingly, these stretch enhancers are often tissue-specific and overlap locus control regions, suggesting that they are important chromatin regulatory beacons. Indeed, we show that (i) tissue specificity of enhancers and nearby gene expression increase with enhancer length; (ii) neighborhoods containing stretch enhancers are enriched for important cell type-specific genes; and (iii) GWAS variants associated with traits relevant to a particular cell type are more enriched in stretch enhancers compared with short enhancers. Reporter constructs containing stretch enhancer sequences exhibited tissue-specific activity in cell culture experiments and in transgenic mice. These results suggest that stretch enhancers are critical chromatin elements for coordinating cell type-specific regulatory programs and that sequence variation in stretch enhancers affects risk of major common human diseases. Overall design: Integrated analysis of islet chromatin modification and transcriptome data with those generated by the ENCODE project. NISC Comparative Sequencing Program

Publication Title

Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact