refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 549 results
Sort by

Filters

Technology

Platform

accession-icon GSE12128
Expression data from ectodermal explants following activation of hormone-inducible zic1
  • organism-icon Xenopus laevis
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome Array (xenopuslaevis)

Description

The response of ectodermal explants, neuralized by noggin and treated with cycloheximide, following activation of hormone-inducible zic1 injected into the parent embryos compared to those from beta globin injected embryos as controls, is expected to provide information on the direct targets of the Zic1 transcription factor.

Publication Title

A microarray screen for direct targets of Zic1 identifies an aquaporin gene, aqp-3b, expressed in the neural folds.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35466
Expression data from bone marrow cultures treated with adiponectin - evidence for lipopolysaccharide contamination
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The adipocyte-derived hormone adiponectin potently inhibits osteoclast formation in vitro.

Publication Title

Evidence that contamination by lipopolysaccharide confounds in vitro studies of adiponectin activity in bone.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12348
Prostate cancer cell lines and normal prostate epithelial and stromal cells in primary culture
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The primary goal of this study was to assess differences in gene expression between prostate cancer cell lines and normal prostate epithelial and stromal cells in primary culture.

Publication Title

DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP170415
Cistromic re-programming by truncating GATA3 mutations promotes mesenchymal transformation in vitro, but not mammary tumour formation in mice [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Heterozygous mutations in the transcription factor GATA3 are identified in 10-15% of all breast cancer cases. Most of these are protein-truncating mutations, concentrated within or downstream of the second GATA-type zinc-finger domain. Here, we investigated the functional consequences of expression of two truncated GATA3 mutants, in vitro in breast cancer cell lines and in vivo in the mouse mammary gland. We found that the truncated GATA3 mutants display altered DNA binding activity caused by preferred tethering through FOXA1. In addition, expression of the truncated GATA3 mutants reduces E-cadherin expression and promotes anchorage-independent growth in vitro. However, we could not identify any effects of truncated GATA3 expression on mammary gland development or mammary tumor formation in mice. Together, our results demonstrate that both truncated GATA3 mutants promote cistromic re-programming of GATA3 in vitro, but these mutants are not sufficient to induce tumor formation in mice. Overall design: RNAseq data of T47D cells expressing HA-tagged wild-type GATA3 (HA_GATA3_wt) or one of two truncated variants (HA_GATA3_TR1 and HA_GATA3_TR2).

Publication Title

GATA3 Truncating Mutations Promote Cistromic Re-Programming In Vitro, but Not Mammary Tumor Formation in Mice.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE38870
Expression data of satellite cells through muscle injury time course
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Satellite cells are resident skeletal muscle stem cells responsible for muscle maintenance and repair. In resting muscle, satellite cells are maintained in a quiescent state. Satellite cell activation induces the myogenic commitment factor, MyoD, and cell cycle entry to facilitate transition to a population of proliferating myoblasts that eventually exit the cycle and regenerate muscle tissue. The molecular mechanism involved in the transition of a quiescent satellite cell to a transit-amplifying myoblast is poorly understood.

Publication Title

A role for RNA post-transcriptional regulation in satellite cell activation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE16970
Response of Pseudomonas aeruginosa PAO1 to low shear modeled microgravity
  • organism-icon Pseudomonas aeruginosa pao1
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

Anticipating the risk for infectious disease during space exploration and habitation is a critical factor to ensure safety, health and performance of the crewmembers. As a ubiquitous environmental organism that is occasionally part of the human flora, Pseudomonas aeruginosa could pose a health hazard for the immuno-compromised astronauts. In order to gain insights in the behavior of P. aeruginosa in spaceflight conditions, two spaceflight-analogue culture systems, i.e. the rotating wall vessel (RWV) and the random position machine (RPM), were used. Microarray analysis of P. aeruginosa PAO1 grown in the low shear modeled microgravity (LSMMG) environment of the RWV compared to the normal gravity control (NG), revealed a regulatory role for AlgU (RpoE). Specifically, P. aeruginosa cultured in LSMMG exhibited increased alginate production and up-regulation of AlgU-controlled transcripts, including those encoding stress-related proteins. This study also shows the involvement of Hfq in the LSMMG response, consistent with its previously identified role in the Salmonella LSMMG- and spaceflight response. Furthermore, cultivation in LSMMG increased heat- and oxidative stress resistance and caused a decrease in the culture oxygen transfer rate. Interestingly, the global transcriptional response of P. aeruginosa grown in the RPM was similar to that in NG. The possible role of differences in fluid mixing between the RWV and RPM is discussed, with the overall collective data favoring the RWV as the optimal model to study the LSMMG-response of suspended cells. This study represents a first step towards the identification of specific virulence mechanisms of P. aeruginosa activated in response to spaceflight-analogue conditions, and could direct future research regarding the risk assessment and prevention of Pseudomonas infections for the crew in flight and the general public.

Publication Title

Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP148597
Single-cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment 3'' RNA Sequencing
  • organism-icon Homo sapiens
  • sample-icon 168 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000, Illumina HiSeq 2500

Description

Knowledge of immune cell phenotypes in the tumor microenvironment is essential for understanding mechanisms of cancer progression and immunotherapy response. We created an immune map of breast cancer using single-cell RNA-seq data from 45,000 immune cells from eight breast carcinomas, as well as matched normal breast tissue, blood, and lymph node. We developed a preprocessing pipeline, SEQC, and a Bayesian clustering and normalization method, Biscuit, to address computational challenges inherent to single-cell data. Despite significant similarity between normal and tumor tissue-resident immune cells, we observed continuous phenotypic expansions specific to the tumor microenvironment. Analysis of paired single-cell RNA and T cell receptor (TCR) sequencing data from 27,000 additional T cells revealed the combinatorial impact of TCR utilization on phenotypic diversity. Our results support a model of continuous activation in T cells and do not comport with the macrophage polarization model in cancer, with important implications for characterizing tumor-infiltrating immune cells.  Overall design: Single-cell RNA sequencing was performed on eight donors using the InDrop v2 protocol. For each donor populations of CD45+ immune cells were assayed for trancriptome-wide RNA-sequence. At least one replicate was taken for each donor.

Publication Title

Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP148594
Single-cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment - 5'' RNA sequencing and TCR sequencing
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconNextSeq 500, Illumina HiSeq 2500

Description

Knowledge of immune cell phenotypes in the tumor microenvironment is essential for understanding mechanisms of cancer progression and immunotherapy response. We created an immune map of breast cancer using single-cell RNA-seq data from 45,000 immune cells from eight breast carcinomas, as well as matched normal breast tissue, blood, and lymph node. We developed a preprocessing pipeline, SEQC, and a Bayesian clustering and normalization method, Biscuit, to address computational challenges inherent to single-cell data. Despite significant similarity between normal and tumor tissue-resident immune cells, we observed continuous phenotypic expansions specific to the tumor microenvironment. Analysis of paired single-cell RNA and T cell receptor (TCR) sequencing data from 27,000 additional T cells revealed the combinatorial impact of TCR utilization on phenotypic diversity. Our results support a model of continuous activation in T cells and do not comport with the macrophage polarization model in cancer, with important implications for characterizing tumor-infiltrating immune cells.  Overall design: Single-cell RNA sequencing was performed on three patients using the 10x genomics TCR profiling kits. For each patient, populations of T-cells were assayed for both TCR sequence and trancriptome-wide RNA-sequence. Two donors have a replicate experiment.

Publication Title

Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE75774
Expression data from mouse neonatal hindlimb muscles
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

During neonatal development, skeletal muscle grows dramatically by myonuclei accretion to existing fibers and hypertophic growth of fibers with protein synthesis.

Publication Title

An NF-κB--EphrinA5-Dependent Communication between NG2(+) Interstitial Cells and Myoblasts Promotes Muscle Growth in Neonates.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE76880
Expression data from human 3D skin models in response to IL-31 treatment
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Atopic dermatitis, a chronic inflammatory skin disease with increasing prevalance, is closely associated with skin barrier defects. A cytokine related to disease severity and inhibition of keratinocyte differentiation is IL-31. To identify its molecular targets, IL-31-dependent gene expression was determined in 3-dimensional organotypic skin models.

Publication Title

Control of the Physical and Antimicrobial Skin Barrier by an IL-31-IL-1 Signaling Network.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact