refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 218 results
Sort by

Filters

Technology

Platform

accession-icon GSE12679
Laser capture microdissection of endothelial and neuronal cells from human dorsolateral prefrontal cortex
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used laser capture microdissection to isolate both microvascular endothelial cells and neurons from post mortem brain tissue from patients with schizophrenia and bipolar disorder and healthy controls. RNA was isolated from these cell populations, amplified, and analysed using Affymetrix HG133plus2.0 GeneChips. In the first instance, we used the dataset to compare the neuronal and endothelial data, in order to demonstrate that the predicted differences between cell types could be detected using this methodology.

Publication Title

The cerebral microvasculature in schizophrenia: a laser capture microdissection study.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE85921
APOL1 renal-risk variants induce mitochondrial dysfunction
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

<i>APOL1</i> Renal-Risk Variants Induce Mitochondrial Dysfunction.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE85920
APOL1 renal-risk variants induce mitochondrial dysfunction (Affymetrix 2)
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20), Illumina HumanHT-12 V4.0 expression beadchip

Description

To assess differential gene expression by APOL1 renal-risk (2 risk alleles) vs. non-risk (G0G0) genotypes in primary proximal tubule cells (PTCs), global gene expression (mRNA) levels were examined on Affymetrix HTA 2.0 arrays in primary PTCs cultured from non-diseased kidney in African Americans without CKD who underwent nephrectomy for localized renal cell carcinoma.

Publication Title

<i>APOL1</i> Renal-Risk Variants Induce Mitochondrial Dysfunction.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE85919
APOL1 renal-risk variants induce mitochondrial dysfunction (Affymetrix 1)
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20), Illumina HumanHT-12 V4.0 expression beadchip

Description

To elucidate pathways whereby apolipoprotein L1 gene (APOL1) G1 and G2 variants facilitate kidney disease in African Americans, human embryonic kidney cells (HEK293) were used to establish doxycycline-inducible (Tet-on) cell lines stably expressing reference APOL1 G0 and its G1 and G2 renal-risk variants. Illumina human HT-12-v4 arrays and Affymetrix HTA 2.0 arrays were employed to generate global gene expression data with doxycycline induction. Significantly altered pathways identified through bioinformatics involved mitochondrial function; results were validated using immunoblotting, immunofluorescence and functional assays.

Publication Title

<i>APOL1</i> Renal-Risk Variants Induce Mitochondrial Dysfunction.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP133849
Unique features and clinical importance of acute alloreactive immune responses
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

By 2 weeks after stem cell transplantation, there was differentiated changes in T cell phenotype between autograft and allograft. RNA-seq was used to reveal the different transcription profiles of these T cells at week 2 after SCT. Overall design: Compare the transcription profile of the T cells in allograft and autograft transplantation patients.

Publication Title

Unique features and clinical importance of acute alloreactive immune responses.

Sample Metadata Fields

Specimen part, Disease, Subject, Time

View Samples
accession-icon SRP154973
Reprogramming of Tumor-infiltrating Immune Cells in Early Stage of NSCLC
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Comparing the relative proportions of immune cells in tumor and adjacent normal tissue from NSCLC patients demonstrates the early changes of tumor immunity and provides insights to guide immunotherapy design. We mapped the immune ecosystem using computational deconvolution of bulk transcriptome data from the Cancer Genome Atlas (TCGA) and single cell RNA sequencing (scRNA-seq) data of dissociated tumors from early-stage non-small cell lung cancer (NSCLC) to investigate early immune landscape changes occurring during tumorigenesis. Computational deconvolution of immune infiltrates in 44 NSCLC and matching adjacent normal samples from TCGA showed heterogeneous patterns of alterations in immune cells. The scRNA-seq analyses of 11,485 cells from 4 treatment-naïve NSCLC patients comparing tumor to adjacent normal tissues showed diverse changes of immune cell compositions. Notably, CD8+ T cells and NK cells are present at low levels in adjacent normal tissues, and are further decreased within tumors. Myeloid cells exhibited marked dynamic reprogramming activities, which were delineated with differentiation paths through trajectory analysis. A common differentiation path from CD14+ monocytes to M2 macrophages was identified among the 4 cases, accompanied by up-regulated genes (e.g. ALCAM/CD166, CD59, IL13RA1, IL7R) with enriched functions (adipogenesis, lysosome), and down-regulated genes (e.g. CXCL2, IL1B, IL6R) with enriched functions (TNFa signaling via NF-kB, inflammatory response). Computational deconvolution and single cell sequencing analyses have revealed a highly dynamic immune reprogramming that occurs in early stage NSCLC development, suggesting that normalizing both immune compartments may represent a viable strategy for treatment of early stage cancer and prevention of progression. Overall design: Map the immune ecosystem using computational deconvolution of bulk transcriptome data from the Cancer Genome Atlas (TCGA) and single cell RNA sequencing (scRNA-seq) data of dissociated tumors from from early-stage non-small cell lung cancer (NSCLC) to investigate early immune landscape changes occurring during tumorigenesis

Publication Title

Dissecting intratumoral myeloid cell plasticity by single cell RNA-seq.

Sample Metadata Fields

Sex, Specimen part, Disease, Race, Subject

View Samples
accession-icon SRP043339
Global Transcriptome Analysis and Enhancer Landscape of Human Primary T Follicular Helper and T Effector Lymphocytes (RNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

T follicular helper (Tfh) cells are a subset of CD4+ T helper (Th) cells that migrate into germinal centers and promote B cell maturation into memory B and plasma cells. Tfh cells are necessary for promotion of protective humoral immunity following pathogen challenge, but when aberrantly regulated, drive pathogenic antibody formation in autoimmunity and undergo neoplastic transformation in angioimmunoblastic T-cell lymphoma and other primary cutaneous T-cell lymphomas. Limited information is available on the expression and regulation of genes in human Tfh cells. Using a fluorescence activated cell sorting-based strategy, we obtained primary Tfh and non-Tfh T effector (Teff) cells from tonsils and prepared genome-wide maps of active, intermediate, and poised enhancers determined by ChIP-seq, with parallel transcriptome analyses determined by RNA-seq. Tfh cell enhancers were enriched near genes highly expressed in lymphoid cells or involved in lymphoid cell function, with many mapping to sites previously associated with autoimmune disease in genome-wide association studies. A group of active enhancers unique to Tfh cells associated with differentially expressed genes was identified. Fragments from these regions directed expression in reporter gene assays. These data provide a significant resource for studies of T lymphocyte development and differentiation and normal and perturbed Tfh cell function. Overall design: Using a fluorescence activated cell sorting-based strategy, we obtained primary Tfh and non-Tfh T effector (Teff) cells from tonsils and prepared genome-wide maps of active, intermediate, and poised enhancers determined by ChIP-seq, with parallel transcriptome analyses determined by RNA-seq.

Publication Title

Global transcriptome analysis and enhancer landscape of human primary T follicular helper and T effector lymphocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13068
Identification of the molecular signatures integral to regenerating photoreceptors in the retina of the zebrafish
  • organism-icon Danio rerio
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Investigating neuronal and photoreceptor regeneration in the retina of zebrafish has begun to yield insights into both the cellular and molecular means by which this lower vertebrate is able to repair its central nervous system. However, knowledge about the signaling molecules in the local microenvironment of a retinal injury and the transcriptional events they activate during neuronal death and regeneration is still lacking. To identify genes involved in photoreceptor regeneration, we combined light-induced photoreceptor lesions, laser-capture microdissection (LCM) of the outer nuclear layer (ONL) and analysis of gene expression to characterize transcriptional changes for cells in the ONL as photoreceptors die and are regenerated. Using this approach, we were able to characterize aspects of the molecular signature of injured and dying photoreceptors, cone photoreceptor progenitors and microglia within the ONL. We validated changes in gene expression and characterized the cellular expression for three novel, extracellular signaling molecules that we hypothesize are involved in regulating regenerative events in the retina.

Publication Title

Identification of the molecular signatures integral to regenerating photoreceptors in the retina of the zebra fish.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9419
The skeletal muscle transcript profile reflects responses to inadequate protein intake in younger and older males
  • organism-icon Homo sapiens
  • sample-icon 66 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Inadequate protein intake initiates an accommodative response with adverse changes in skeletal muscle function and structure. mRNA level changes due to short-term inadequate dietary protein might be an early indicator of accommodation. The aims of this study were to assess the effects of dietary protein and the diet-by-age interaction on the skeletal muscle transcript profile. Self-organizing maps were used to determine expression patterns across protein trials.

Publication Title

The skeletal muscle transcript profile reflects accommodative responses to inadequate protein intake in younger and older males.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE13231
The effect of inherited polymorphism on prognostic gene expression signatures
  • organism-icon Mus musculus
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a), Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The origins of breast cancer prognostic gene expression profiles.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact