refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 316 results
Sort by

Filters

Technology

Platform

accession-icon SRP076926
Analysis of kidney macrophages'' gene expression at steady state
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Analysis of gene expression (RNAseq) from isolated kidney macrophages injetced i.v. with PBS Overall design: C57BL/6J mice were injected i.v. with PBS. One hour after injection, kidney macrophages were isolated (sorted by FACS) for gene expression analysis.

Publication Title

Immune Monitoring of Trans-endothelial Transport by Kidney-Resident Macrophages.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP075476
Differentiation and specification of resident tissue macrophages [SMART-Seq2]
  • organism-icon Mus musculus
  • sample-icon 158 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Tissue resident macrophages are functionally diverse cells that share an embryonic mesodermal origin. However, the mechanism(s) that control their specification remain unclear. We performed transcriptional, molecular and in situ spatio-temporal analyses of macrophage development in mice. We report that Erythro-Myeloid Progenitors generate pre-macrophages (pMacs) that simultaneously colonize the head and caudal embryo from embryonic day (E)9.5 in a chemokine-receptor dependent manner, to further differentiate into tissue F4/80+ macrophages. The core macrophage transcriptional program initiated in pMacs, is rapidly diversified in early macrophages as expression of transcriptional regulators becomes tissue-specific. For example, the preferential expression of the transcriptional regulator Id3 initiated in early fetal liver macrophages appears critical for Kupffer cell differentiation, as inactivation of Id3 causes a selective Kupffer cell deficiency that persists in adults. We propose that colonization of developing tissues by differentiating macrophages is immediately followed by their specification as they establish residence, hereby generating the macrophage diversity observed in post-natal tissues. Overall design: RNA-sequencing of sorted macrophage cell populations (Mac) and progenitors (EMP, pMac) from various tissues and collected at different time points, including technical and biological replicates

Publication Title

Specification of tissue-resident macrophages during organogenesis.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon SRP075553
Differentiation and specification of resident tissue macrophages [MARS-seq]
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HiSeq 1500

Description

Tissue resident macrophages are functionally diverse cells that share an embryonic mesodermal origin. However, the mechanism(s) that control their specification remain unclear. We performed transcriptional, molecular and in situ spatio-temporal analyses of macrophage development in mice. We report that Erythro-Myeloid Progenitors generate pre-macrophages (pMacs) that simultaneously colonize the head and caudal embryo from embryonic day (E)9.5 in a chemokine-receptor dependent manner, to further differentiate into tissue F4/80+ macrophages. The core macrophage transcriptional program initiated in pMacs, is rapidly diversified in early macrophages as expression of transcriptional regulators becomes tissue-specific. For example, the preferential expression of the transcriptional regulator Id3 initiated in early fetal liver macrophages appears critical for Kupffer cell differentiation, as inactivation of Id3 causes a selective Kupffer cell deficiency that persists in adults. We propose that colonization of developing tissues by differentiating macrophages is immediately followed by their specification as they establish residence, hereby generating the macrophage diversity observed in post-natal tissues. Overall design: RNA-sequencing of sorted macrophage cell populations (Mac) and progenitors (EMP, pMac) from various tissues and collected at different time points, including technical and biological replicates

Publication Title

Specification of tissue-resident macrophages during organogenesis.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE7605
Expression in Kir6.1-deficient heart following LPS challenge
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

KATP opposes depolarization of cells in the heart, smooth muscle, and other tissues by permitting the efflux of potassium ions and this efflux is evidently required to prevent unopposed vasoconstriction and insufficiency of coronary artery blood flow triggered by one or more cytokines induced in response to LPS. The cytokine(s) involved must elicit a dysfunctional response in the Kir6.1-deficient environment, and to gain further insight into the effects of the mutation, we examined the transcriptional status of whole heart, isolated from normal C57BL/6J mice or KcnJ8Md/Md mice, before and after injection of 1 g of LPS

Publication Title

ATP-sensitive potassium channels mediate survival during infection in mammals and insects.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE45365
Genome-wide expression study of the early/innate responses of murine B and T cells to MCMV infection
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Murine Cytomegalovirus (MCMV) infection leads to early activation of various immune cells, including B and T lymphocytes, before the actual initiation of antigen-specific adaptive immunity. This activation is partly driven by innate cytokines, including type I interferon (IFN), which are induced early after infection. The objective of this study was to address the role of type I IFN in shaping early/innate B and T cell responses to a primary acute viral infection.

Publication Title

Plasmacytoid, conventional, and monocyte-derived dendritic cells undergo a profound and convergent genetic reprogramming during their maturation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41793
Differential expression in Wn5a and vector transduced 4T1 cells.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

WNT5A inhibits metastasis and alters splicing of Cd44 in breast cancer cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE41791
Differential expression in Wn5a and vector transduced 4T1 cells. [Affymetrix microarray data]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

A highly metastatic breast cancer cell line, 4T1, was used to generate stable Wnt5a expressing and vector only control cells. Cells were generated using lentivirus infection and selection with blasticidin. Expression of Wnt5a was confirmed using western blot. Cell behaviour was characterized. Wnt5a expressing cells exhibited reduced migration in a transwell assay and reduced metastasis in a tail vein injection assay. Growth was not significantly affected.

Publication Title

WNT5A inhibits metastasis and alters splicing of Cd44 in breast cancer cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP154372
Differential gene expression in NPHS2-Cre +/+ mouse glomeruli versus wild-type control
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

To investigate differential gene expression that might account for the differing glomerular phenotype of NPHS2-Cre +/+ mice when compared with wild-type control, including altered GBM thickness, loss of normal foot process morphology, and decrease in podocyte number, RNA sequencing analysis was performed on glomeruli extracted from both NPHS2-Cre +/+ and wild-type control mice. Overall design: Following isolation of glomeruli using Dynabeads from NPHS2-Cre +/+ and wild-type control mice (n=2 biological replicates per genotype, singly isolated), total RNA was extracted and RNA samples were submited for sample preparation and sequencing.

Publication Title

Podocyte-specific expression of Cre recombinase promotes glomerular basement membrane thickening.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP056087
The acetyllysine reader BRD3R promotes human nuclear reprogramming and regulates mitosis
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

It is well known that both recipient cells and donor nuclei demonstrate a mitotic advantage as observed in the traditional reprogramming with somatic cell nuclear transfer (SCNT). However, It is not known whether a specific mitotic factor plays a critical role in reprogramming. Here we identify an isoform of human bromodomain-containing 3 (BRD3), BRD3R (BRD3 with Reprogramming activity), as a reprogramming factor. BRD3R positively regulates mitosis during reprogramming, upregulates a large set of mitotic genes at early stages of reprogramming, and associates with mitotic chromatin. Interestingly, a set of the mitotic genes upregulated by BRD3R constitutes a pluripotent molecular signature. The two BRD3 isoforms display differential binding to acetylated histones. Our results suggest a molecular interpretation for the mitotic advantage in reprogramming, and show that mitosis may be a driving force of reprogramming. Overall design: Human BJ cells transduced with lentiviral particles of the conventional reprogramming factors (OCT3/4, SOX2 and KLF4) were used as controls. Two types of controls were used: 1) BJ transduced with OSK (OCT4, SOX2 and KFL4) viruses; 2) BJ cells transduced with OSK plus GFP viruses. Experimental treatment was BJ cells transduced with OSK plus BRD3R viruses. RNA was extracted from cells at day 3 of reprogramming because the reprogramming cells are still homogeneous and transgenes are well expressed at this time point.

Publication Title

The acetyllysine reader BRD3R promotes human nuclear reprogramming and regulates mitosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18795
Expression data from zebrafish embryos homozygous mutant for the cohesin subunit Rad21
  • organism-icon Danio rerio
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Rad21 is a subunit of cohesin. The main function of cohesin is to hold replicated chromosomes together until cells divide, but it also plays a role in gene expression. To find out which genes might be regulated by cohesin, a study was conducted to look for global changes in gene expression in zebrafish embryos lacking cohesin component Rad21.

Publication Title

Positive regulation of c-Myc by cohesin is direct, and evolutionarily conserved.

Sample Metadata Fields

Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact