refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 34 results
Sort by

Filters

Technology

Platform

accession-icon GSE13141
Identification of candidate neuroblastoma genes by combining genomic and expression microarrays
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of candidate genes involved in neuroblastoma progression by combining genomic and expression microarrays with survival data.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE13136
Identification of candidate neuroblastoma genes by combining genomic and expression microarrays: expression data
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression analysis was performed on 30 Neuroblastomas to identify genes whose transcription is significantly altered by recurrent chromosomal alterations. Genomic copy number losses and gains had been delineated in the tumours using FISH and SNP arrays. We have identified genes significantly altered by 7 recurrent alterations: 1p, 3p, 4p, 10q and 11q loss, 2p and 17q gain, and genes co-amplified and over-expressed as a result of MYCN amplification.

Publication Title

Identification of candidate genes involved in neuroblastoma progression by combining genomic and expression microarrays with survival data.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE50532
Gene expression analysis of RB1 knockdown in bone in response to radiation
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The role of RB1 in response to radiation was examined in human osteoblasts. We demonstrate that RB1 induced SASP genes, a response which was attenuated in RB1 knockdown osteoblasts.

Publication Title

Immune response to RB1-regulated senescence limits radiation-induced osteosarcoma formation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE43765
Expression data from exponentially proliferating ovarian cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 98 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We used microarrays to assess gene expression in proliferating ovarian cancer cell lines

Publication Title

Synergistic inhibition of ovarian cancer cell growth by combining selective PI3K/mTOR and RAS/ERK pathway inhibitors.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE48921
Gene expression and copy number analysis of OVCAR-3 and CDK2 resistant sublines
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Resistance to CDK2 inhibitors is associated with selection of polyploid cells in CCNE1-amplified ovarian cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48919
Gene expression analysis of OVCAR-3 and CDK2 resistant sublines
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Cyclin E1 (CCNE1) is amplified in various tumor types including high-grade serous ovarian cancer where it is associated with poor clinical outcome. We have demonstrate that suppression of the Cyclin E1 partner kinase, CDK2, induces apoptosis in a CCNE1 amplicon-dependent manner. Little is known of mechanisms of resistance to CDK inhibitors. We therefore generated OVCAR-3 sublines with reduced sensitivity to CDK2 inhibitors and profiled by gene expression microarrays.

Publication Title

Resistance to CDK2 inhibitors is associated with selection of polyploid cells in CCNE1-amplified ovarian cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42872
Expression data from BRAFV600E A375 melanoma cells treated with vehicle or vemurafenib
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Vemurafenib is a BRAF inhibitor with specificity for the most common BRAF mutant encountered in melanomas (BRAFV600E). Vemurafenib suppresses the proliferation of BRAF mutant human melanoma cells by suppressing downstream activation of the MEK/ERK mitogen activated protein kinases.

Publication Title

Response of BRAF-mutant melanoma to BRAF inhibition is mediated by a network of transcriptional regulators of glycolysis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE38734
Expression data from primary ovarian samples and matched abdominal deposits
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We used unsupervised hierarchical clustering to analyse expression in primary ovarian tumors and associated abdominal deposits. GeneGo pathway analysis of differentially expressed genes between primary tumors and deposits revealed 4 of the top 10 pathways related to cytoskeleton remodeling and cell adhesion.

Publication Title

LRP1B deletion in high-grade serous ovarian cancers is associated with acquired chemotherapy resistance to liposomal doxorubicin.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon SRP113020
Neoplastic pancreas cells enter a quasi-mesenchymal state with increased oncogenic potential following transient TGF-ß exposure
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease and a major health problem in the United States. While the cytokine TGF-ß has been implicated in PDAC development, it can exert bot pro- and anti-tumorigenic effects that are highly context dependent and incompletely understood. To better characterize the responses of neoplastic pancreas cells to TGF-ß, three-dimensional (3D) cultures of KrasG12D-expressing mouse pancreatic epithelial cells were employed. While active exposure to exogenous TGF-ß caused the KrasG12D cells to growth arrest, its subsequent removal allowed the cells to enter a hyper-proliferative, quasi-mesenchymal (QM) and progenitor-like state. This transition was highly stable and maintained by autocrine TGF-ß signaling. Transient pulses of TGF-ß have been observed during pancreatitis, a major risk factor for PDAC, and may therefore serve to convert pre-existing KrasG12D-expressing cells into QM cells. While untreated KrasG12D cells formed simple cysts in vivo, QM cells formed ductal structures resembling human PanINs. Furthermore, markers of the QM state are expressed in human PDAC and are associated with worse outcomes. These data suggest that the QM state plays a role in PDAC development and may selectively contribute to more aggressive PDAC subtypes. This work therefore provides novel molecular insights into both PDAC development and the complex role of TGF-ß in tumorigenesis. Overall design: Three technical replicates per experimental group from one isolate were analyzed by RNA sequencing

Publication Title

Pre-neoplastic pancreas cells enter a partially mesenchymal state following transient TGF-β exposure.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP034938
Analysis of the mRNA Targetome of MicroRNAs Expressed by Marek’s Disease Virus
  • organism-icon Gallus gallus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HiSeq 2000

Description

Marek’s disease virus 1 (MDV-1), an oncogenic -herpesvirus that induces T-cell lymphomas in chickens, serves as model system to study transformation by lymphotropic herpesviruses. Like the oncogenic human -herpesviruses Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), MDV-1 encodes several viral microRNAs (miRNAs). One MDV-1 miRNA, miR-M4, shares the same “seed” targeting sequence with both a KSHV miRNA, miR-K11, and cellular miR-155. Importantly, miR-M4 plays a critical role in T-cell transformation by MDV-1, while miR-K11 and cellular miR-155 are thought to play key roles in B-cell transformation by KSHV and EBV, respectively. Here, we present an analysis of the mRNAs targeted by viral miRNAs expressed in the chicken T-cell line MSB1, which is naturally coinfected with MDV-1 and the related nonpathogenic virus MDV-2. Our analysis identified>1,000 endogenous mRNAs targeted by miRNAs encoded by each virus, many of which are targeted by both MDV-1 and MDV-2 miRNAs. We present a functional analysis of an MDV-1 gene, RLORF8, targeted by four MDV-1 miRNAs and a cellular gene, encoding interleukin-18 (IL-18) and targeted by both MDV-1 and MDV-2 miRNAs, and show that ectopic expression of either protein in a form resistant to miRNA inhibition results in inhibition of cell proliferation. Finally, we present a restricted list of 9 genes targeted by not only MDV-1 miR-M4 but also KSHV miR-K11 and human miR-155. Given the critical role played by miR-155 seed family members in lymphomagenesis in humans and chickens, these mRNA targets may contain genes whose inhibition plays a conserved role in herpesvirus transformation. Overall design: PAR-CLIP experiment of MSB1 cells

Publication Title

Analysis of the mRNA targetome of microRNAs expressed by Marek's disease virus.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact