refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 125 results
Sort by

Filters

Technology

Platform

accession-icon GSE94279
Expression data from environmentally enriched mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Environmental enrichment has been shown to induce wholescale alterations to the gene expression profile of experimental animals

Publication Title

The impact of environmental enrichment on the murine inflammatory immune response.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE63357
Identification of distinct molecular signatures in AIP mutation-positive familial isolated pituitary adenomas
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The aim of this study was to perform comparative gene expression analysis of AIP mutation-positive, AIP mutation-negative familial and sporadic somatotroph tumours to discover the genes/pathways responsible for the aggressive phenotype.

Publication Title

Multi-chaperone function modulation and association with cytoskeletal proteins are key features of the function of AIP in the pituitary gland.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33156
Hedgehog signaling in T cell differentiation
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Despite Hedgehogs influence on T-cell activation and proliferation, the transcriptional targets of Gli2 in lymphocytes are not known. We therefore examined the Hedgehog-dependent transcriptional response of resting and early-stage activated T-cells in order to define their transcriptional response to Hedgehog pathway activation.

Publication Title

Tissue-derived hedgehog proteins modulate Th differentiation and disease.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE14807
Investigation of over-expressing Annexin receptor cell line with and without agonists
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The therapeutic potential of pro-resolution factors in determining the outcome of inflammatory events has gained ground over the past decade. However, the attention has been focused on the non-genomic effects of these endogenous, anti-inflammatory substances. In this study, we have focused our attention on identifying specific annexin 1 (AnxA1) protein/ALX receptor mediated gene activation, in an effort to identify down-stream genomic targets of this well-known, glucocorticoid induced, pro-resolution factor.

Publication Title

Downstream gene activation of the receptor ALX by the agonist annexin A1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP097580
Genome Wide Transcriptional Modelling of a 24hour timecourse of T-helper cell differentiation
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

In this study we used Genome Wide Transcriptional Modelling (GWTM) to investigate the temporal transcriptional changes during CD4 Th0, Th1 and Th2 differentiation in the first 24 hours after T cell activation. We measured the transcriptional response by RNA seq every four hours for a 24 hour time course. Overall design: WT CD4 T cells were isolated and purified from adult murine spleen. The purified CD4 cells were then set up in culture under three different conditions: Th0, Th1 and Th2. Cells were extracted at 4 hour timepoints during a 24hour timecourse and RNA was extracted for each timepoint under each condition. This RNA was further sequenced to analyse the genome wide transcriptional changes through time under each of the three conditions.

Publication Title

IFITM proteins drive type 2 T helper cell differentiation and exacerbate allergic airway inflammation.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE8702
Longitudinal Analysis of Progression to Androgen Independence
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Following androgen ablation therapy (AAT), the vast majority of prostate cancer patients develop treatment resistance with a median time of 18-24 months to disease progression. To identify molecular targets that aid in prostate cancer cell survival and contribute to the androgen independent phenotype, we evaluated changes in LNCaP cell gene expression during 12 months of androgen deprivation. At time points reflecting critical growth and phenotypic changes, we performed Affymetrix expression array analysis to examine the effects of androgen deprivation during the acute response, during the period of apparent quiescence, and during the emergence of highly proliferative, androgen-independent prostate cancer cells (LNCaP-AI). We discovered alterations in gene expression for a host of molecules associated with promoting prostate cancer cell growth and survival, regulating cell cycle progression, apoptosis and adrenal androgen metabolism, in addition to AR co-regulators and markers of neuroendocrine disease. These findings illustrate the complexity and unpredictable nature of cancer cell biology and contribute greatly to our understanding of how prostate cancer cells likely survive AAT. The value of this longitudinal approach lies in the ability to examine gene expression changes throughout the cellular response to androgen deprivation; it provides a more dynamic illustration of those genes which contribute to disease progression in addition to specific genes which constitute a malignant androgen-independent phenotype. In conclusion, it is of great importance that we employ new approaches, such as the one proposed here, to continue exploring the cellular mechanisms of therapy resistance and identify promising targets to improve cancer therapeutics.

Publication Title

Longitudinal analysis of androgen deprivation of prostate cancer cells identifies pathways to androgen independence.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP016626
Specific miRNA Stabilization by Gld2-catalyzed Monoadenylation
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

miRNAs are small non-coding RNAs that inhibit translation and promote mRNA decay. The levels of mature miRNAs are the result of different rates of transcription, processing, and turnover. The non-canonical polymerase Gld2 has been implicated in the stabilization of miR-122 possibly by catalyzing 3’ monoadenylation, however, there is little evidence that this relationship is one of cause and effect. Here, we biochemically characterize Gld2 involvement in miRNA monoadenylation and its effect on miRNA stability. We find that Gld2 directly monoadenylates and stabilizes specific miRNA populations in human fibroblasts and that sensitivity to monoadenylation-induced stability depends on nucleotides in the miRNA 3‘ end. These results establish a novel mechanism of miRNA stability and resulting post-transcriptional gene regulation. Overall design: Sequencing of miRNAs to assess amount and 3'' end monoadenylation state upon Gld2 knock-down.

Publication Title

Specific miRNA stabilization by Gld2-catalyzed monoadenylation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE27175
Formalin Fixation at Low Temperature Better Preserves Nucleic Acid Integrity
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

INTRODUCTION. Fixation with formalin, a widely adopted procedure to preserve tissue samples, leads to extensive degradation of nucleic acids and thereby compromises procedures like microarray-based gene expression profiling. We hypothesized that RNA fragmentation is caused by activation of RNAses during the interval between formalin penetration and tissue fixation. To prevent RNAse activation, a series of tissue samples were kept under-vacuum at 4C until fixation and then fixed at 4C, for 24 hours, in formalin followed by 4 hours in ethanol 95%.

Publication Title

Formalin fixation at low temperature better preserves nucleic acid integrity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP012054
The let-7-Imp axis regulates aging of the Drosophila testis stem cell niche.
  • organism-icon Drosophila melanogaster
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Adult stem cells support tissue homeostasis and repair throughout the life of an individual. However, numerous intrinsic and extrinsic changes occur with age that result in altered stem cell behavior and reduced tissue maintenance and regeneration. In the Drosophila testis, stem cells surround and contact the apical hub, a cluster of somatic cells that express the self-renewal factor Unpaired (Upd), which activates the JAK-STAT pathway in adjacent stem cells. However, aging results in a dramatic decrease in upd expression, with a concomitant loss of germline stem cells (GSCs). Here we present genetic and biochemical data to demonstrate that IGF-II mRNA binding protein (Imp) counteracts endogenous small interfering RNAs to stabilize upd RNA and contribute to maintenance of the niche. However, Imp expression decreases in hub cells of older males, similar to upd, which is due to targeting of Imp by the heterochronic microRNA let-7. Therefore, in the absence of Imp, upd mRNA becomes unprotected and susceptible to degradation. Understanding the mechanistic basis for aging-related changes in stem cell behavior will lead to the development of strategies to treat age-onset diseases and facilitate stem cell based therapies in older individuals. Overall design: Examination of small RNA levels in testes from young (1day old) and aged (30days old) males of Drosophila melanogaster by deep sequencing (using Illumina GAII).

Publication Title

The let-7-Imp axis regulates ageing of the Drosophila testis stem-cell niche.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE58368
Linking Notch signaling to ischemic stroke
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Using a hitherto uncharacterized knockout mouse model of Notch 3, a Notch signaling receptor paralogue highly expressed in vascular SMCs, we uncover a striking susceptibility to ischemic stroke upon challenge. Cellular and molecular analyses of vascular SMCs derived from these animals associate Notch 3 activity to the expression of specific gene targets, whereas genetic rescue experiments unambiguously link Notch 3 function in vessels to the ischemic phenotype.

Publication Title

Notch signaling functions in retinal pericyte survival.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact