refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 672 results
Sort by

Filters

Technology

Platform

accession-icon SRP148693
Next generation sequencing of distal colon glial cells with DNBS-induced inflammation and neurokinin-2 receptor antagonism utilizing RiboTag mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Purpose:We have the first-reported set of glial-specific transcripts utilizing the Ribotag model. We use this model to explore glial changes in DNBS-induced inflammation and neurokinin-2 receptor (NK2R) antagonism. Methods: Actively translated mRNA profiles of the distal colon myeneteric plexi of Rpl22(+/-)Sox10(+/-) male and female mice 8-10 weeks old were obtained utilizing the HA-tagged ribosomal immunoprecipitation and downstream RNA extraction. Samples meeting RNA quality standards by 18S and 28S rRNA peaks by 2100 Bioanalyzer and RNA 6000 Nano LabChip Kit (Agilent) were deep sequenced with the Illumina HiSeq 4000. Results: We mapped approximately 30-50 millions reads per sample to the mouse genome (v88) and identified approximately 100K ribosome-associated transcripts, with Tuxedo workflow, in distal colon glial cells with DNBS-induced inflammation and NK2R antagonism and their respective controls. Of these transcripts, changes in biological processes associated with inflammation and other important enteric nervous system communications between samples have been identified. Conclusions: Our study demonstrates the first use of the Ribotag model to provide glial cell-specific actively-translated mRNA changes in DNBS-induced inflammation with and without functional NK2R signalling. Overall design: Distal colon glial mRNA samples from Ribotag Rpl22(+/-)Sox10(+/-) mice administered either saline or DNBS and DMSO vehicle or NK2R antagonism.

Publication Title

Communication Between Enteric Neurons, Glia, and Nociceptors Underlies the Effects of Tachykinins on Neuroinflammation.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP068926
Matrix-dependent cardiac progenitor cell fate is instructed by the early regulation of YAP and Plk2
  • organism-icon Rattus norvegicus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Although recent studies support regenerative potential based on cardiac progenitor cells (CPCs), it remains unclear what cues regulate CPC fate. Using 2- and 3D-culture models, we demonstrate that the two most abundantly expressed matrix proteins in the heart, laminin and fibronectin, have opposite roles in CPC fate decision. CPCs on fibronectin showed predominantly nuclear localization of the transcriptional co-activator YAP and maintained proliferation. In contrast, seeding on laminin induced cytosolic retention and degradation of YAP and altered gene expression, which preceded decreased proliferation and enhanced lineage commitment. RNA-sequencing identified Plk2 as candidate target gene of YAP. Plk2 expression depended on YAP stability, was rapidly downregulated on laminin, and its regulation was sufficient to rescue and/or mimic the CPC response to laminin and fibronectin, respectively. These findings propose a novel role of Plk2 and identify an early molecular mechanism in matrix-instructed CPC fate with potential implications for therapeutic cardiac regeneration. Overall design: Expression profiling of cardiac progenitor cells in suspension and cultured on dishes coated with laminin or fibronectin or on non-coated dishes (biological triplicates each)

Publication Title

Polo-Like Kinase 2 is Dynamically Regulated to Coordinate Proliferation and Early Lineage Specification Downstream of Yes-Associated Protein 1 in Cardiac Progenitor Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP108034
Single cell RNA-seq of mouse brain astrocyte transcriptomes
  • organism-icon Mus musculus
  • sample-icon 250 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

By analyzing 250 astrocyte single cell transcriptomes from adult brain, we provide gene expresssion profile of brain astrocyte Overall design: We chose adult mice about 3 months old and analysed single cells in the brain. We chose a methodology based on fluorescence-activated cell sorting (FACS) into 384-well plates followed by the SmartSeq2 methodology.

Publication Title

Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE28133
Transcriptomic analysis of human retinal detachment (RD) reveals both inflammation and photoreceptor death
  • organism-icon Homo sapiens
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We have used surgical specimens to perform a differential analysis of the transcriptome of human retinal tissues following detachment.

Publication Title

Transcriptomic analysis of human retinal detachment reveals both inflammatory response and photoreceptor death.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP150634
The ESCRT-III protein CHMP1A mediates secretion of sonic hedgehog on a novel class of extracellular vesicles
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, Ion Torrent Proton

Description

Extracellular vesicles (EVs) enable cell-to-cell communication in the nervous system essential for development and adult function. Endosomal Sorting Complex Required for Transport (ESCRT) complex proteins regulate EV formation and release. Recent work shows loss of function (LOF) mutations in, CHMP1A, which encodes one ESCRT-III member, cause autosomal recessive microcephaly with pontocerebellar hypoplasia in humans (Mochida et al., 2012). Here we show CHMP1A is required for maintenance of progenitors in human cerebral organoids and that mouse Chmp1a is required for progenitor proliferation in cortex and cerebellum and specifically for sonic hedgehog (SHH) mediated proliferation through SHH secretion. CHMP1A mutation reduces intraluminal vesicle (ILV) formation in multivesicular bodies (MVBs), and EV release. SHH protein is present on a subset of EVs marked by a unique set of proteins we call ART-EVs. CHMP1A's requirement in formation of ART-EVs and other EVs provides a model to elucidate EV functions in multiple brain processes. Overall design: Gene expression profiling in a hiPSC WT line and a hiPSC CHMP1A null line. Comparative analysis by RNA-seq in hIPSCs and directed differentiation to cerebral organoids. Treatment with smoothened agonist (SAG) was used for examination of SHH dependent response in WT and CHMP1A null organoids.

Publication Title

The ESCRT-III Protein CHMP1A Mediates Secretion of Sonic Hedgehog on a Distinctive Subtype of Extracellular Vesicles.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE34900
RET fusion genes, BCR-RET and FGFR1OP-RET, are associated with chronic myelomonocytic leukemia, display sensitivity to Sorafenib, an inhibitor of tyrosine-kinase activity and enhance monocytic differentiation
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Myeloproliferative neoplasms are frequently associated with aberrant constitutive tyrosine kinase (TK) activity resulting from point mutations or chimaeric fusion genes, such as BCR ABL1 or JAK2 V617F. We report here for the first time in hematological malignancies, two novel fusion genes involving the TK RET, BCR-RET and FGFR1OP-RET, in chronic myelo monocytic leukemia (CMML) cases. The two RET fusion genes lead to the aberrant activation of RET, are able to transform hematopoietic cells and skew the hematopoietic differentiation program towards the monocytic/macrophage lineage. We also report that the BCR-RET fusion protein is insensitive to Imatinib but sensitive to Sorafenib in vivo. CMML is an hematopoietic malignancy associated with the frequent activation of the RAS pathway. The RET fusion genes seems to constitutively mimic the same signaling pathway than RAS mutations. Overall, the RET fusion genes behaviors in the monocytic lineage underlie the role of the normal RET TK activity during the physiological monocytic differentiation.

Publication Title

RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP052229
Improved transcription and translation with L-leucine stimulation of mTORC1
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Roberts syndrome (RBS) is a human developmental disorder caused by mutations in the cohesin acetyltransferase ESCO2. We previously reported that mTORC1 was inhibited and overall translation was reduced in RBS cells. Treatment of RBS cells with L-leucine partially rescued mTOR function and protein synthesis, correlating with increased cell division. In this study, we use RBS as a model for mTOR inhibition and analyze transcription and translation with ribosome profiling to determine genome-wide effects of L-leucine. The translational efficiency of many genes is increased with Lleucine in RBS cells including genes involved in ribosome biogenesis, translation, and mitochondrial function. snoRNAs are strongly upregulated in RBS cells, but decreased with L-leucine. Imprinted genes, including H19 and GTL2, are differentially expressed in RBS cells consistent with contribution to mTORC1 control. This study reveals dramatic effects of L-leucine stimulation of mTORC1 and supports that ESCO2 function is required for normal gene expression and translation. Overall design: 42 samples of human fibroblast cell lines with various genotypes (wt, corrected, and esco2 mutants) are treated with l-leucine or d-leucine (control) for 3 or 24 hours. Biological replicates are present.

Publication Title

Improved transcription and translation with L-leucine stimulation of mTORC1 in Roberts syndrome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE86416
MYC favors the onset of tumorigenesis by inducing epigenetic reprogramming of mammary epithelial cells towards a stem cell-like state
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE86407
MYC favors the onset of tumorigenesis by inducing epigenetic reprogramming of mammary epithelial cells towards a stem cell-like state [microarray]
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

We address the molecular mechanisms through which MYC promotes loss of cell identity and acquisition of stem cell-like traits, favouring the onset of tumorigenesis, by performing gene expression profile analyses in a transition from WT IMEC, IMEC over-expressing MYC and mammospeheres formed from IMEC-MYC (named M2). We then investigated the global gene expression profile of the fraction of cells hyper-activating the WNT pathway in M2 spheres, compared to the ones with low activation

Publication Title

MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE77425
Control of the inflammatory macrophage transcriptional signature by miR-155
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Classically activated (M1) macrophages protect from infection but can cause inflammatory disease and tissue damage while alternatively activated (M2) macrophages reduce inflammation and promote tissue repair. Modulation of macrophage phenotype may be therapeutically beneficial and requires further understanding of the molecular programs that control macrophage differentiation. A potential mechanism by which macrophages differentiate may be through microRNA (miRNA), which bind to messenger RNA and post-transcriptionally modify gene expression, cell phenotype and function. The inflammation-associated miRNA, miR-155, was rapidly up-regulated over 100-fold in M1, but not M2, macrophages. Inflammatory M1 genes and proteins iNOS, IL-1b and TNF-a were reduced up to 72% in miR-155 knockout mouse macrophages, but miR-155 deficiency did not affect expression of genes associated with M2 macrophages (e.g., Arginase-1). Additionally, a miR-155 oligonucleotide inhibitor efficiently suppressed iNOS and TNF-a gene expression in wild-type M1 macrophages. Comparative transcriptional profiling of unactivated (M0) and M1 macrophages derived from wild-type and miR-155 knockout (KO) mice revealed an M1 signature of approximately 1300 genes, half of which were dependent on miR-155. Real-Time PCR of independent datasets validated miR-155's contribution to induction of iNOS, IL-1b, TNF-a, IL-6 and IL-12, as well as suppression of miR-155 targets Inpp5d, Tspan14, Ptprj and Mafb. Overall, these data indicate that miR-155 plays an essential role in driving the differentiation and effector potential of inflammatory M1 macrophages.

Publication Title

Control of the Inflammatory Macrophage Transcriptional Signature by miR-155.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact