refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 252 results
Sort by

Filters

Technology

Platform

accession-icon GSE19615
Integrated genomic and function characterization of the 8q22 gain
  • organism-icon Homo sapiens
  • sample-icon 113 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Integrated DNA and expression array analysis in primary human breast tumors identified chromosome 8q22 copy number gain and a suite of over-expressed genes in this region highly relevant to subsequent recurrence.

Publication Title

Amplification of LAPTM4B and YWHAZ contributes to chemotherapy resistance and recurrence of breast cancer.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE16391
GGI: a potential predictor of relapse for endocrine-treated breast cancer patients in the BIG 1-98 trial
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: We have previously shown that the Gene expression Grade Index (GGI) was able to identify two subtypes of estrogen receptor (ER)-positive tumors that were associated with statistically distinct clinical outcomes in both untreated and tamoxifen-treated patients. Here, we aim to investigate the ability of the GGI to predict relapses in postmenopausal women who were treated with tamoxifen (T) or letrozole (L) within the BIG 1-98 trial.

Publication Title

The Gene expression Grade Index: a potential predictor of relapse for endocrine-treated breast cancer patients in the BIG 1-98 trial.

Sample Metadata Fields

Age, Specimen part, Disease stage, Treatment

View Samples
accession-icon GSE81068
Expression profile of Epstein Barr Virus infected mammary epithelial cells and Breast tumors
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Whether the human tumor virus, Epstein-Barr virus (EBV) promotes breast cancers remains controversial and a potential mechanism has remained elusive. Here we show EBV can infect primary mammary epithelial cells (MECs) that express the attachment receptor, CD21. EBV infection leads to the expansion of early MEC progenitor cells with a stem cell phenotype and enforces a differentiation block. When MECs were implanted as xenografts, EBV infection cooperated with activated Ras and accelerated the formation of breast cancer. Infection in EBV-related tumors was of a latency type II pattern, including expression of latent membrane proteins 1 (LMP1) and 2 (LMP2), similar to nasopharyngeal carcinoma (NPC). A human gene expression signature for EBVness was generated based on the RNA expression profile of the EBV infected primary mammary epithelial cells, tumors. This was signature associated with high grade (40 vs 13.5%) estrogen-receptor-negative status (31.8 vs. 10.5%, p53 mutation (37.5 vs 14.5%) and poor survival. In 11/33 (33%) of tumors positive for EBVness EBV-DNA was found in tumor cells by fluorescent in situ hybridization for the viral LMP1 and BXLF2 genes, while only 4/36 (11%) of EBVness-negative tumors tested positive for EBV DNA. An analysis of the TCGA breast cancer data revealed a correlation of EBVness with presence of the APOBEC mutational signatures consistent with past viral infection. We conclude that a contribution of EBV to breast cancer etiology via a hit-and-run mechanism is plausible, in which EBV infection predisposes mammary epithelial cells to malignant transformation, but is not required for the maintenance of the malignant phenotype.

Publication Title

Epstein-Barr Virus Infection of Mammary Epithelial Cells Promotes Malignant Transformation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE53031
Gene expression profiling of human breast cancer during pregnancy
  • organism-icon Homo sapiens
  • sample-icon 167 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Using a dataset of 54 pregnant and 113 age/stage-matched non-pregnant breast cancer patients with complete clinical and survival data; we evaluated the pattern of hot spot somatic mutations and performed transcriptomic profiling using Sequenom and Affymetrix, respectively. Breast cancer molecular subtypes were defined using PAM50 and 3-Gene classifiers. We performed Gene set enrichment analysis (GSEA) to evaluate pathways associated with diagnosis during pregnancy. We investigated the differential expression of cancer-related genes and published gene sets according to pregnancy. We finally investigated genes associated with disease-free survival.

Publication Title

Biology of breast cancer during pregnancy using genomic profiling.

Sample Metadata Fields

Age, Disease stage

View Samples
accession-icon GSE65095
FinHER trial : Patients with human epidermal growth factor receptor 2 (HER2)positive breast cancer
  • organism-icon Homo sapiens
  • sample-icon 203 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

The FinHER trial is a multicentre phase 3 randomised adjuvant breast cancer trial that enrolled 1010 patients. The women were randomly assigned to receive three cycles of docetaxel or vinorelbine, followed by three cycles of fluorouracil, epirubicin, and cyclophosphamide.

Publication Title

Integrative proteomic and gene expression analysis identify potential biomarkers for adjuvant trastuzumab resistance: analysis from the Fin-her phase III randomized trial.

Sample Metadata Fields

Age, Disease stage

View Samples
accession-icon GSE17700
Factorial study for evaluating the effect of Affy platform and lab on gene expression measurements
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Comparison of concordance in single and multi-gene genomic indices from data generated by two different laboratories (MD Anderson Cancer Center (MDA) and Jules Bordet Institute (JBI)) and on two different Affymetrix platforms (U113A and U133_Plus2).

Publication Title

Genomic index of sensitivity to endocrine therapy for breast cancer.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE43358
Transfer of clinically relevant gene expression signatures in breast cancer: from Affymetrix microarray to Illumina RNA-Sequencing technology
  • organism-icon Homo sapiens
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microarrays have revolutionized breast cancer (BC) research by enabling studies of gene expression on a transcriptome-wide scale. Recently, RNA-Sequencing (RNA-Seq) has emerged as an alternative for precise readouts of the transcriptome. To date, no study has compared the ability of the two technologies to quantify clinically relevant individual genes and microarray-derived gene expression signatures (GES) in a set of BC samples encompassing the known molecular BC's subtypes. To accomplish this, the RNA from 57 BCs representing the four main molecular subtypes (triple negative, HER2 positive, luminal A, luminal B), was profiled with Affymetrix HG-U133 Plus 2.0 chips and sequenced using the Illumina HiSeq 2000 platform. The correlations of three clinically relevant BC genes, six molecular subtype classifiers, and a selection of 21 GES were evaluated.

Publication Title

Transfer of clinically relevant gene expression signatures in breast cancer: from Affymetrix microarray to Illumina RNA-Sequencing technology.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
accession-icon GSE6532
Definition of clinically distinct molecular subtypes in estrogen receptor positive breast carcinomas using genomic grade
  • organism-icon Homo sapiens
  • sample-icon 737 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Purpose: A number of microarray studies have reported distinct molecular profiles of breast cancers (BC): basal-like, ErbB2-like and two to three luminal-like subtypes. These were associated with different clinical outcomes. However, although the basal and the ErbB2 subtypes are repeatedly recognized, identification of estrogen receptor (ER)-positive subtypes has been inconsistent. Refinement of their molecular definition is therefore needed.

Publication Title

Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade.

Sample Metadata Fields

Age, Disease stage

View Samples
accession-icon GSE9195
Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen
  • organism-icon Homo sapiens
  • sample-icon 77 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: Estrogen receptor positive (ER+) breast cancers (BC) are heterogeneous with regard to their clinical behavior and response to therapies. The ER is currently the best predictor of response to the anti-estrogen agent tamoxifen, yet up to 30-40% of ER+BC will relapse despite tamoxifen treatment. New prognostic biomarkers and further biological understanding of tamoxifen resistance are required. We used gene expression profiling to develop an outcome-based predictor using a training set of 255 ER+ BC samples from women treated with adjuvant tamoxifen monotherapy. We used clusters of highly correlated genes to develop our predictor to facilitate both signature stability and biological interpretation. Independent validation was performed using 362 tamoxifen-treated ER+ BC samples obtained from multiple institutions and treated with tamoxifen only in the adjuvant and metastatic settings.

Publication Title

Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen.

Sample Metadata Fields

Age, Disease stage, Treatment

View Samples
accession-icon GSE80809
Expression data from lung CD11b+ conventional dendritic cells in the steady-state and following exposure to house dust mite allergens
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Using mouse lung resident conventional CD11b+ dendritic cells (CD11b+ cDCs) in the context of house-dust mite (HDM)-driven allergic airway sensitization as a model, we aimed here to identify transcriptional events regulating the pro-Th2 activity of cDCs.

Publication Title

Interferon response factor-3 promotes the pro-Th2 activity of mouse lung CD11b<sup>+</sup> conventional dendritic cells in response to house dust mite allergens.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact