We performed microarrays to identify change of gene expression under NR, CR, and RM and found differentially expressed genes between each condition.
Caloric Restriction and Rapamycin Differentially Alter Energy Metabolism in Yeast.
No sample metadata fields
View SamplesMost human tumors have abnormal numbers of chromosomes, a condition known as aneuploidy. The mitotic checkpoint is an important mechanism that prevents aneuploidy through restraining the activity of the anaphase-promoting complex (APC). USP44 was identified as a key regulator of APC activation that maintains the association of MAD2 with the APC co-activator Cdc20. However, the physiological importance of USP44 and its impact on cancer biology are unknown. Here, we show that USP44 is required to prevent tumors in mice and is frequently down-regulated in human lung cancer. USP44 inhibits chromosome segregation errors independently of its role in the mitotic checkpoint by regulating proper centrosome separation, positioning, and mitotic spindle geometry, functions that require direct binding to the centriole protein, centrin. These data reveal a new role for the ubiquitin system in mitotic spindle regulation and underscore the importance of USP44 in the pathogenesis of human cancer.
USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis.
Sex, Disease, Disease stage
View SamplesSexual dimorphism of the behaviors or physiological functions in mammals is mainly due to the sex difference of the brain. The goal of this study is to identify genes mediating sexaul dimorphism of the brain.
Microarray analysis of perinatal-estrogen-induced changes in gene expression related to brain sexual differentiation in mice.
Sex, Specimen part
View SamplesOur hypothesis was that at any given point in time, islets will contain differing populations of beta cells at different stages of their lifecycle, with further changes occurring with metabolic stress and aging. We examined subpopulations of beta cells isolated from MIP-GFP mice on the basis of their insulin transcriptional activity and in their expression of p16Ink4a. In addition, using aging C57Bl/6 mice as a model, markers of beta cell aging were identified and validated: Igf1r and Cd99 expression increased with age, whereas Kcnq5 was decreased with age. These markers were correlated with an age-related decline in function. The functional aging of beta cells was accelerated by S961, an antagonist to the insulin receptor, which induced insulin resistance. Particularly surprising was the finding of marked islet heterogeneity as demonstrated with the marked staining differences of the markers: Igf1r, Cd99 and Kcnq5. These novel findings about beta cell and islet heterogeneity, and how they change with age, open up an entirely new set of questions that must be addressed about the pathogenesis of type 2 diabetes. The present study has identified new markers of aging in beta cells and found that the expression of these and other markers can be increased by insulin resistance. This provides insight into how insulin resistance might accelerate the death of beta cells. In addition, striking heterogeneity among islets was found, which opens up new ways to think about islet biology and the pathogenesis of T2D.
β Cell Aging Markers Have Heterogeneous Distribution and Are Induced by Insulin Resistance.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Phosphoserine aminotransferase 1 is associated to poor outcome on tamoxifen therapy in recurrent breast cancer.
No sample metadata fields
View SamplesExpression data were used to predict the activity status of diverse pathways, which were compared to Tamoxifen response
Phosphoserine aminotransferase 1 is associated to poor outcome on tamoxifen therapy in recurrent breast cancer.
No sample metadata fields
View SamplesExpression data were used to predict the activity status of diverse pathways, which were compared to Tamoxifen response
Phosphoserine aminotransferase 1 is associated to poor outcome on tamoxifen therapy in recurrent breast cancer.
No sample metadata fields
View SamplesThe goal of this experiment was to identify transcripts that are differentially expressed in dCAP-D3 mutant tissues. Overall design: RNA was isolated from wing discs and salivary glands of wild type (w1118) or dCap-D3 homozygous mutant (dCap-D3c07081/c07081) larvae. Directional (wing disc) or nondirectional (salivary gland) cDNA libraries (50 bp, paired end) were made at the University of Chicago Genomics Core and sequenced on an Illumina HiSeq2500, according to standard protocols.
Comparing and Contrasting the Effects of <i>Drosophila</i> Condensin II Subunit dCAP-D3 Overexpression and Depletion <i>in Vivo</i>.
Specimen part, Cell line, Subject
View SamplesSecretion of insulin by pancreatic cells in response to glucose is central for glucose homeostasis, and dysregulation of this process is a hallmark of the early stages of diabetes. We utilized a tetracycline-inducible approach to investigate the immediate impact of a pulse of Sox17 expression on the insulin secretory pathway. Sox17 gain-of-function animals (Sox17-GOF) were generated using an Ins2-rtTA mouse line and a line in which Sox17 expression is regulated by the tetracycline transactivator (tetO-Sox17). Administering doxycycline to 16-week old mice resulted in Sox17 overexpression in mature cells in the islets.
Sox17 regulates insulin secretion in the normal and pathologic mouse β cell.
Age, Specimen part
View SamplesMicroarrays were used to detail the global programme of gene expression comparing wild-type and RNAi knock-down plants of SPT4-1 and SPT4-2
The transcript elongation factor SPT4/SPT5 is involved in auxin-related gene expression in Arabidopsis.
Age, Specimen part
View Samples