refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 151 results
Sort by

Filters

Technology

Platform

accession-icon GSE144612
Expression data
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st), Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Tumor-Derived Retinoic Acid Regulates Intratumoral Monocyte Differentiation to Promote Immune Suppression.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE144608
Expression data from cultured human monocytes
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Retinoic acid signaling regulates monocyte differentiation into dendritic cells or macrophages. We used microarrays to uncover gene expression changes associated with retinoic acid exposure in human monocytes.

Publication Title

Tumor-Derived Retinoic Acid Regulates Intratumoral Monocyte Differentiation to Promote Immune Suppression.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE144611
Expression data from tumor-infiltrating macrophages.
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The microenvironment has profound effect on macrophage phenotype. Here we examine the phenotype of macrophages infiltrating murine undifferentiated pleomorphic sarcomas. We used microarray to examine gene expression profile of tumor-associated macrophages in murine undifferentiated pleomorphic sarcomas.

Publication Title

Tumor-Derived Retinoic Acid Regulates Intratumoral Monocyte Differentiation to Promote Immune Suppression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE50112
Effect of Alloantibody and Complement on Endothelial Cells
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Examine the possible pro-inflammatory gene effects of alloantibody and complement on endothelial cells

Publication Title

Alloantibody and complement promote T cell-mediated cardiac allograft vasculopathy through noncanonical nuclear factor-κB signaling in endothelial cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP057156
RNA sequencing of cells treated with DMSO or Retinoic acid during cardiac differentiation
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconNextSeq500

Description

Analysis of transcriptional differences between control and RA-treated cells during cardiac differentiation. The hypothesis tested in these samples is that addition of RA during differentiation towards atrial-like cardiomyocytes while control cells treated with DMSO result in ventricular-like cardiomyocytes. Overall design: NKX2.5 (eGFP/w)-hESCs were differentiated to cardiomyocytes with spin EB protocol, with the addition of RA or DMSO. Cells were sorted at day-31 based on GFP resulting in CTplus, CTminus, RAplus or RAminus goups. RNA was isolated from each of these fractions for sequencing.

Publication Title

KeyGenes, a Tool to Probe Tissue Differentiation Using a Human Fetal Transcriptional Atlas.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE45423
Gene expression profile in the heart of wild type and Adenosine Receptor A2a over expressing mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Adenosine binds to 4 G protein-coupled receptors located on the cardiomyocyte (A1-R, A2a-R, A2b-R and A3-R) and modulates cardiac function during both ischemia and load-induced stress. While the role of adenosine receptor-subtypes has been well defined in the setting of ischemia-reperfusion, far less is known regarding their roles in protecting the heart during other forms of cardiac stress.

Publication Title

Identification of candidate long noncoding RNAs associated with left ventricular hypertrophy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE133865
Naa10p Inhibits Beige Adipocyte-mediated Thermogenesis through N-α-acetylation of Pgc1α
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We reported that both conventional and adipose-specific Naa10p deletions in mice result in increased energy expenditure, thermogenesis, beige adipocyte differentiation and activation. Mechanistically, Naa10p acetylates the N-terminus of Pgc1α and prevents it from interacting with Ppar𝛾 to activate key genes, such as Ucp1, involved in beige adipocyte function. We used microarrays to profile the gene expression changes by Naa10p KO in inguinal white adipose tissues (iWATs) derived from mice fed with high fat diet for 15 weeks.

Publication Title

Naa10p Inhibits Beige Adipocyte-Mediated Thermogenesis through N-α-acetylation of Pgc1α.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP041265
Study of Foxp3 expression in tumor-associated macrophages
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Using 5 differents approaches, including RNA sequencing, we demonstrated that macrophages that specifically infiltrate renal tumors, express the immunosuppressive transcription factor Foxp3. Overall design: Examination of the Foxp3 mRNA expression in 3 different cell subsets (including CD4 T cells (CD4), type-1 macrophages (M1) and type-2 macrophages (M2))

Publication Title

Foxp3 expression in macrophages associated with RENCA tumors in mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP049756
Dynamics of MBD2 deposition across methylated DNA regions during malignant transformation of human mammary epithelial cells (2)
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

DNA methylation is thought to induce a transcriptional silencing through the combination of two mechanisms: the repulsion of transcriptional activators that do not recognize their binding sites when methylated, and the recruitment of transcriptional repressors that specifically bind methylated DNA. Methyl CpG Binding Domain proteins MeCP2, MBD1 and MBD2 belong to the latter category. However, the exact contribution of each protein in the DNA methylation dependent transcriptional repression occurring during development and diseases remains elusive. Here we present MBD2 ChIPseq data generated from the endogenous protein in an isogenic cellular model of human mammary oncogenic transformation. In immortalized or transformed cells, MBD2 was found in one fourth of methylated regions and associated with transcriptional silencing. Depletion of MBD2 induces upregulations of genes bound by MBD2 and methylated in their transcriptional start site regions. MBD2 was partially redistributed on methylated DNA during oncogenic transformation, independently of DNA methylation changes. Genes downregulated during this transformation preferentially gained MBD2 binding sites on their promoter. Depletion of MBD2 in transformed cells induced the upregulation of some of these repressed genes, independently of the strategy used for the abrogation of oncosuppressive barriers. Our data confirm that MBD2 is a major interpret of DNA methylation, and show an unreported dynamic in this interpretation during oncogenic transformation. Overall design: RNAseq of untreated HMEC-hTERT cells, siCtrl, siMBD2 or DAC treated HMLER cells, siCtrl or siMBD2 treated HME-ZEB1-RAS and HME-shP53-RAS cells, in duplicates.

Publication Title

Dynamics of MBD2 deposition across methylated DNA regions during malignant transformation of human mammary epithelial cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE89634
Expression data from NKG2A/C/E+ and negative CD4 effectors after influenza A infection
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

CD4 T cells can differentiate into a hetergenous population of effector T cells. A population of cytotoxic CD4 T cells can be generated against influenza challenge, however identifying these cells have been challenging. The expression of NKG2A/C/E on CD4 T cells identifies CD4 T cells with cytotoxic potential thus allowing further characterization of this subset of CD4 effector cells.

Publication Title

NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact