refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12 results
Sort by

Filters

Technology

Platform

accession-icon GSE12100
hsa-mir-26b and hsa-mir-98 overexpression
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MicroRNA target prediction by expression analysis of host genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12091
Profiling gene expression in HeLa cells by hsa-mir-26b overexpression
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Total RNA samples from three biological replicates in which the hsa-mir-26b was overexpressed in HeLa cells were profiled by gene expression. As negative control, we used total RNA samples from HeLa cells transfected with cel-mir-67

Publication Title

MicroRNA target prediction by expression analysis of host genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12092
Profiling gene expression in HeLa cells by hsa-mir-98 overexpression
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Total RNA samples from three biological replicates in which the hsa-mir-98 was overexpressed in HeLa cells were profiled by gene expression. As negative control, we used total RNA samples from HeLa cells transfected with cel-mir-67

Publication Title

MicroRNA target prediction by expression analysis of host genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE37084
Transcriptome analysis of Myotonic Dystrophy type 2 (DM2) patients.
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Myotonic Dystrophy Type-2 (DM2) is an autosomal dominant disease caused by the expansion of a CCTG tetraplet repeat. It is a multisystemic disorder, affecting skeletal muscles, the heart, the eye, the central nervous system and the endocrine system.

Publication Title

Genome wide identification of aberrant alternative splicing events in myotonic dystrophy type 2.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon SRP026315
High-throughput sequencing of PROMPT-enriched samples.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Sequencing of 5' and 3'ends and RNA-seq of PROMPT and mRNA molecules from control and exosome-depleted cells. Overall design: CAGE, 3'TAG and RNAseq library construction from RNA extracted from control and exosome-depleted cells.

Publication Title

Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE73037
Cross-species Gene Expression Analysis Identifies a Novel Set of Genes Implicated in Human Insulin Sensitivity
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cross-species gene expression analysis identifies a novel set of genes implicated in human insulin sensitivity.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE73036
Insulin resistance in high fat diet mouse
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Recent discovery reveals HFD insult can cause insulin resistance very rapidly, but the underlying mechanism is still not well understood. We performed a short term experiment in a Diet Induced Insulin resistance mouse model.

Publication Title

Cross-species gene expression analysis identifies a novel set of genes implicated in human insulin sensitivity.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon SRP124300
Next Generation Sequencing Facilitates Quantitative Analysis of Wild Type and miR-211-/- Whole Eye Transcriptomes
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS transcriptome profiling (RNA-seq) from whole eye, after removal of the lens and cornea from 1-2 month old miR-211-/- mice and compare it with wt mice Methods: Whole eye (after removal of the lens and cornea) mRNA profiles of 1-2 month old wild-type (WT) and neural miR-211-/-mice were generated by deep sequencing, in multiple biological replicates, five for WT and six for miR-211-/- animals, using Illumina GAIIx. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT–PCR validation was performed using TaqMan and SYBR Green assays RNA-Seq libraries were prepared from whole eye, after removal of the lens and cornea from miR-211-/- mice. Results: Each library was sequenced using 100 bp paired-end sequencing on the Illumina HiSeq 1000 system. Gene abundances from RNA-Seq data were quantified using RSEM45. Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome. This approach yielded read count values for a total of 38253 mouse genes annotated in GenCode. We only considered genes that had at least 1 count per million in at least five out of 11 samples as expressed, yielding a total of 15590 genes. Next we performed differential gene expression analysis to determine the transcriptional effects of miR-211 deletion. This analysis yielded a total of 63 genes that were differentially expressed with a False Discovery Rate (FDR) <0.1 (Fig. 4). Of these, the expression levels of 61 genes were significantly decreased upon miR-211 deletion, while only 2 genes were upregulated. Conclusions: Our study represents the first detailed analysis of whole eye transcriptomes, with biologic replicates, generated by RNA-seq technology on miR-211-/-. Overall design: Whole eye (after removal of the lens and cornea) mRNA profiles of 1-2 month old wild-type (WT) and neural miR-211-/-mice were generated by deep sequencing, in multiple biological replicates, five for WT and six for miR-211-/- animals, using Illumina GAIIx.

Publication Title

MiR-211 is essential for adult cone photoreceptor maintenance and visual function.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE7014
Expression data from DM1, DM2 and Normal Adult Skeletal Muscle Biopsies
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

DM1 and DM2 biopsies from patients were compared to Normal adult individuals

Publication Title

Differences in aberrant expression and splicing of sarcomeric proteins in the myotonic dystrophies DM1 and DM2.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE62980
Expression data from mice after knockout or overexpression of Tcfeb in muscle
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcription Factor EB Controls Metabolic Flexibility during Exercise.

Sample Metadata Fields

Age, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact