refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 159 results
Sort by

Filters

Technology

Platform

accession-icon SRP059880
RNA-seq of cytosolic and chromatin-associated transcripts following TNFa and Spt5 KD
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We examined the effects of TNFa and Spt5, the major DSIF subunit, on nascent and mature transcripts using RNA-Seq of chromatin-associated and cytoplasmic transcripts. Overall design: RNA was extracted from the cytosolic and chromatin fractions of control and Spt5 KD cells that were treated with TNFa for 1 hour

Publication Title

Analysis of Subcellular RNA Fractions Revealed a Transcription-Independent Effect of Tumor Necrosis Factor Alpha on Splicing, Mediated by Spt5.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP057251
Investigation about fibroblasts of different origins in culture
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

The goal of this study was to determine if fibroblasts from different origin (skin, colon, tumors) were keeping their characteristic while extracted and cultured ex vivo for several passages. HUVEC was used as a control, being cells from a different background. Surprisingly, fibroblasts from different origins are losing their independant characteristic to cluster in a similar way after 5-6 passages in culture in vitro, showing an activated status. Overall design: Fibroblasts were extracted from human skin, colon normal stroma and colon tumor stroma. HUVECs were extracted from human samples at the same time. All cells, each group from 3 different patients, were grown on plastic for 5 passages and mRNA was extracted to perform RNASeq analysis.

Publication Title

Fibroblast surface-associated FGF-2 promotes contact-dependent colorectal cancer cell migration and invasion through FGFR-SRC signaling and integrin αvβ5-mediated adhesion.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49248
KrasG12D partially compensates for the loss of beta-catenin in MLL-AF9 AML
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in MLL-AF9 AML.

Publication Title

KRas(G12D)-evoked leukemogenesis does not require β-catenin.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE79417
Expression data of Brain CD45+ cells from WT and STI knockout mice after WNV infection
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

West Nile virus (WNV) is the most important cause of endemic encephalitis in the USA. Strikingly, only a small percentage of patients develop clinical disease and of these patients, approximately 1 out of 150 patients develops encephalitis. The basis for this great variability in disease outcome is unknown, but may be related to the innate immune response. Innate immune responses, critical for control of WNV infection, are initiated by signaling through pathogen recognition receptors (PRR) such as RIG-I and MDA5. IPS-1 is a key adaptor in generating a PRR-dependent interferon response.. Here we show that IPS-1 deficiency in hematopoietic cells resulted in increased mortality and delayed WNV clearance from the brain. In IPS-1-/- mice, a dysregulated immune response was detected, characterized by a massive influx of macrophages and virus-specific T cells into the infected brain. These T cells were multifunctional and were able to lyse peptide-pulsed target cells in vitro. However, virus-specific T cells in the infected IPS-1-/- brain exhibited lower functional avidity than those in C57BL/6 brains, possibly contributing to less efficient virus clearance. The presence of virus-specific memory T cells was also not protective. We also show that macrophages were increased in numbers in the IPS-1-/- brain. Both macrophages and microglia exhibited an activated phenotype. Microarray analyses showed the preferential upregulation of genes associated with leukocyte activation and inflammation. Together, these results demonstrate the critical role that hematopoietic cell expression of Type 1 interferon and other IPS-1-dependent molecules have in WNV clearance and in regulating the inflammatory response.

Publication Title

MAVS Expressed by Hematopoietic Cells Is Critical for Control of West Nile Virus Infection and Pathogenesis.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon SRP150412
The interferon-induced exonuclease, ISG20, exerts antiviral activity through upregulation of type I interferon response proteins
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Type I interferon-stimulated genes (ISGs) have critical roles in inhibiting virus replication and dissemination. Despite advances in understanding the molecular basis of ISG restriction, the antiviral mechanisms of many remain unclear. The 20 kDa ISG, ISG20, is a nuclear 3''-5''exonuclease with preference for single stranded RNA (ssRNA) and has been implicated in the IFN-mediated restriction of several RNA viruses. Although the exonuclease activity of ISG20 has been shown to degrade viral RNA in vitro, evidence has yet to be presented that virus inhibition in cells requires this activity. Here, we utilized a combination of an inducible, ectopic expression system and newly generated Isg20-/- mice to investigate mechanisms and consequences of ISG20-mediated restriction. Ectopically expressed ISG20 localized primarily to Cajal bodies in the nucleus and restricted replication of chikungunya and Venezuelan equine encephalitis viruses. Although restriction by ISG20 was associated with inhibition of translation of infecting genomic RNA, degradation of viral RNAs was not observed. Instead, translation inhibition of viral RNA was associated with ISG20-induced upregulation of over 100 other genes, many of which encode known antiviral effectors. ISG20 modulated the production of IFIT1, an ISG that suppresses translation of alphavirus RNAs. Consistent with this observation, the pathogenicity of IFIT1-sensitive alphaviruses was increased in Isg20-/- mice compared to wild-type viruses, but not in ISG20 ectopic-expressing cells. Our findings establish an indirect role for ISG20 in the early restriction of RNA virus replication by regulating expressionof other ISGs that inhibit translation and possibly other activities in the replication cycle. Overall design: Two clones each of tet-inducible MEFs overexpressing eGFP (control), Isg20, and Isg20(D94G) were induced by tetracycline removal for 72 hours. rRNA was depleted with RiboMinus Eukaryote kit (Life Technologies) and prepared for Illumina directional 100bp paired-end HiSeq2000 reads.

Publication Title

The Interferon-Induced Exonuclease ISG20 Exerts Antiviral Activity through Upregulation of Type I Interferon Response Proteins.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP017199
Stability, Delivery and Functions of Human Sperm RNAs at Fertilization
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

We report on abundance and transcript profile characteristics of sperm RNAs. Overall design: Examination of RNA population and distribution in spermatozoa

Publication Title

Stability, delivery and functions of human sperm RNAs at fertilization.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE61208
Gene expression data from 4T1 irradiated tumors treated with TGFbeta blockade
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Accumulating data support the concept that ionizing radiation therapy (RT) has the potential to convert the tumor into an in situ, individualized vaccine; however this potential is rarely realized by RT alone. Transforming growth factor (TGF) is an immunosuppressive cytokine that is activated by RT and inhibits the antigen-presenting function of dendritic cells and the differentiation of effector CD8+ T cells. Here we tested the hypothesis that TGF hinders the ability of RT to promote anti-tumor immunity. Development of tumor-specific immunity was examined in a pre-clinical model of metastatic breast cancer.

Publication Title

TGFβ Is a Master Regulator of Radiation Therapy-Induced Antitumor Immunity.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE49326
Gene expression in Drosophila hemocytes at the onset of metamorphosis, and dependence to the Ecdysone Receptor
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Drosophila Gene 1.1 ST Array (drogene11st)

Description

Coupling immunity and development is essential to ensure survival despite changing internal conditions in the organism. The metamorphosis of the fruit fly represents a striking example of drastic and systemic physiological changes that need to be integrated with the innate immune system. However, the mechanisms that coordinate development and immune cell activity in the transition from larva to adult in Drosophila remain to elucidate. The steroid hormone ecdysone is known to act as a key coordinator of metamorphosis. This hormone activates a nuclear receptor, the Ecdysone Receptor (EcR), which acts as a heterodimer with its partner Ultraspiracle (USP). Together, they activate the transcription of primary response genes, which in turn activate the transcription of a battery of late response genes. We have revealed that regulation of macrophage-like cells (hemocytes) by the steroid hormone ecdysone is essential for an effective innate immune response over metamorphosis. We have shown that in response to ecdysone signalling, hemocytes rapidly up regulate actin dynamics, motility and phagocytosis of apoptotic corpses, and acquire the ability to chemotax to damaged epithelia. Most importantly, individuals lacking ecdysone-activated hemocytes are defective in bacterial phagocytosis and are fatally susceptible to infection by bacteria ingested at larval stages, despite the normal systemic production of antimicrobial peptides. This decrease in survival is comparable to the one observed in pupae lacking immune cells altogether, indicating that ecdysone-regulation is essential to hemocyte immune functions and survival after infection.

Publication Title

Steroid hormone signaling is essential to regulate innate immune cells and fight bacterial infection in Drosophila.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP063413
RNAseq analysis of the duodenum of intestine-specific adult SD mutant mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Aim: Transcriptional analysis of the duodenum of adult Nkx2.2flox/SD;Villin-Cre (SDint) mice versus control Methods: 2 cm of the duodenum (as measured from the stomach) of 6 week old control and mutant mice were dissected and total RNA extracted. Libraries were prepared from total RNA (RIN>8) with the TruSeq RNA prep kit (Illumina) and sequenced using the HiSeq2000 (Illumina) instrument. More than 20 million reads were mapped to the mouse genome (UCSC/mm9) using Tophat (version 2.0.4) with 4 mismatches and 10 maximum multiple hits. Significantly differentially expressed genes were calculated using DEseq. Results: 206 genes with a p-value <0.05 were significantly changed. Among these are some enteroendocrine hormones. Conclusion: The SD domain of Nkx2.2 regulates specification of some enteroendocrine cells Overall design: mRNA profiles of the duodenum of 6 week old control and SDint mice were generated by deep sequencing, in triplicate, using Illumina HiSeq2000.

Publication Title

The novel enterochromaffin marker Lmx1a regulates serotonin biosynthesis in enteroendocrine cell lineages downstream of Nkx2.2.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP071145
RNAseq analysis of the colon of intestine-specific adult Nkx2.2 mutant mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Aim: Transcriptional analysis of the colon of adult Nkx2.2flox/flox;Villin-Cre (Nkx2.2int) mice versus control Methods: 2 cm of the colon (as measured after the caecum) of 6 week old control and mutant mice were dissected and total RNA extracted. Libraries were prepared from total RNA (RIN>8) with the TruSeq RNA prep kit (Illumina) and sequenced using the HiSeq2000 (Illumina) instrument. More than 20 million reads were mapped to the mouse genome (UCSC/mm9) using Tophat (version 2.0.4) with 4 mismatches and 10 maximum multiple hits. Significantly differentially expressed genes were calculated using DEseq. Results: 53 genes with a p-value <0.05 were down-regulated and 36 were up-regulated. Among the changed genes are enteroendocrine hormones. Conclusion: Nkx2.2 regulates enteroendocrine cell specification Overall design: mRNA profiles of the colon of 6 week old control and Nkx2.2int mice were generated by deep sequencing, using Illumina HiSeq2000.

Publication Title

The novel enterochromaffin marker Lmx1a regulates serotonin biosynthesis in enteroendocrine cell lineages downstream of Nkx2.2.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact