refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 175 results
Sort by

Filters

Technology

Platform

accession-icon GSE8027
Dll3 and Notch1 genetic interactions model axial segmental and craniofacial malformations of human birth defects
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Mutations in the Notch1 receptor and delta-like 3 (Dll3) ligand cause global disruptions in axial segmental patterning. Genetic interactions between members of the notch pathway have previously been shown to cause patterning defects not observed in single gene disruptions. We examined Dll3-Notch1 compound mouse mutants to screen for potential gene interactions. While mice heterozygous at either locus appeared normal, 30% of Dll3-Notch1 double heterozygous animals exhibited localized, stochastic segmental anomalies similar to human congenital vertebral defects. Unexpectedly, double heterozygous mice also displayed statistically significant decreases in mandibular height and elongated maxillary hard palate. Examination of somite-stage embryos and perinatal anatomy and histology did not reveal any organ defects, so we used microarray-based analysis of Dll3 and Notch1 mutant embryos to identify gene targets that may be involved in notch-regulated segmental or craniofacial development. Therefore, Dll3-Notch1 double heterozygous mice model human congenital scoliosis and craniofacial disorders.

Publication Title

Dll3 and Notch1 genetic interactions model axial segmental and craniofacial malformations of human birth defects.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP077289
Using RNA Seq to validate transcriptional profile data obtained by Nanostring analysis
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Purpose : The goal of this study was to use RNA Seq to validate transcriptional data of two clinical isolates focussing on a subset of 74 transcript that were selected specifically for Nanostring analysis. Methods : mRNA profiles were generated for the clinical isolates FRD1 and CI224_M, in duplicate, by deep sequencing. Strains were grown for 8 hours in LB medium at 37C prior to RNA harvest. Ribosomal RNA was removed using the Ribi-Zero rRNA Removal Kit (Epicentre). mRNA reads were trimmed and mapped to the PAO1 NC_002516 reference genome from NCBI using the ClC Genomics Workbench platform and defaut parameters. Overall design: mRNA profiles of liquid cultures grown for 8 hours in LB at 37C were generated for P. aeruginosa clinical isolates FRD1 and CI224_M, each in duplicate, by deep sequencing using Illumina NextSeq.

Publication Title

Use of a Multiplex Transcript Method for Analysis of Pseudomonas aeruginosa Gene Expression Profiles in the Cystic Fibrosis Lung.

Sample Metadata Fields

Disease, Subject

View Samples
accession-icon SRP069801
Dissecting the Effect of Genetic Variation on the Hepatic Expression of Drug Disposition Genes across the Collaborative Cross Mouse Strains
  • organism-icon Mus musculus
  • sample-icon 53 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

A central challenge in pharmaceutical research is to investigate genetic variation in response to drugs. The Collaborative Cross (CC) mouse reference population is a promising model for pharmacogenomic studies because of its large amount of genetic variation, genetic reproducibility, and dense recombination sites. While the CC lines are phenotypically diverse, their genetic diversity in drug disposition processes, such as detoxification reactions, is still largely uncharacterized. Here we systematically measured RNA-sequencing expression profiles from livers of 29 CC lines under baseline conditions. We then leveraged a reference collection of metabolic biotransformation pathways to map potential relations between drugs and their underlying expression quantitative trait loci (eQTLs). By applying this approach on proximal eQTLs, including eQTLs acting on the overall expression of genes and on the expression of particular transcript isoforms, we were able to construct the organization of hepatic eQTL-drug connectivity across the CC population. The analysis revealed a substantial impact of genetic variation acting on drug biotransformation, allowed mapping of potential joint genetic effects in the context of individual drugs, and demonstrated crosstalk between drug metabolism and lipid metabolism. Our findings provide a resource for investigating drug disposition in the CC strains, and offer a new paradigm for integrating biotransformation reactions to corresponding variations in DNA sequences. Overall design: This dataset includes RNA-Seq data of mRNA that were extracted from the liver of 55 male mice. The 55 mice belong to 29 different collaborative cross strains. The number of individual mice per strains is 3 for 3 strains, 2 for 16 strains, and 1 for 8 strains. All the mice are naïve without any special treatment.

Publication Title

Dissecting the Effect of Genetic Variation on the Hepatic Expression of Drug Disposition Genes across the Collaborative Cross Mouse Strains.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE52171
Novel Immunotherapy-Induced Tertiary Lymphoid Aggregates Accumulate as Intratumoral Nodal Structures of Immune Regulation in Pancreatic Cancer
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Immunotherapy provides an alternative approach for cancer treatment. However, in-depth analyses of the effects of immunotherapy on the tumor microenvironment (TME) have not been conducted in non-melanoma tumors. Here we describe changes in the pancreatic ductal adenocarcinoma (PDAC) TME following immunotherapy treatment, and show for the first time that vaccine-based immunotherapy directly alters the TME, inducing neogenesis of tertiary lymphoid structures that convert immunologically quiescent tumors into immunologically active tumors. Alterations in five pathways important for immune modulation and lymphoid structure development (TH17/Treg, NFkB, Ubiquitin-proteasome, Chemokines/chemokine receptors, and Integrins/adhesion molecules) in vaccine-induced intratumoral lymphoid aggregates were associated with improved post-vaccination responses. Additional studies in other cancers and patients treated with other forms of immunotherapy are warranted to further develop signatures defined in intratumoral lymphoid structures into biomarkers that predict effective anti-tumor immune responses. These signatures may also expose therapeutic targets for promoting more robust antitumor immune responses in the TME.

Publication Title

Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE47681
trkB.T1 WT versus trkB.T1 KO expression data following spinal cord injury (SCI)
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We profiled spinal cord tissue at the site of a moderate contusion injury at the level of the thoracic spinal cord

Publication Title

TrkB.T1 contributes to neuropathic pain after spinal cord injury through regulation of cell cycle pathways.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon SRP131067
Roles of the Brca2 and Wapl complexes with Pds5 in sister chromatid cohesion, cohesin localization, and gene expression [RNA-seq]
  • organism-icon Drosophila melanogaster
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

RNA expression was measured by RNA-seq in Drosophila ML-DmBG3-c2 cells depleted for proteins involved in sister chromatid cohesion, and in developing third instar wing discs with or withough brca2 gene mutations Overall design: RNA expression in depleted cells was compared to mock treated cells and RNA expression in wing discs from brca2 mutant Drosophila was compared to expression in wing discs without brca2 mutations This series includes mock RNAi treated samples re-used from GSE100547.

Publication Title

Brca2, Pds5 and Wapl differentially control cohesin chromosome association and function.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE21834
Identification of the receptor tyrosine kinase AXL in triple negative breast cancer as a novel target for the human miR-34a microRNA
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of the receptor tyrosine kinase AXL in breast cancer as a target for the human miR-34a microRNA.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE17566
Inactivation of Unr results in induction of differentiation of murine ES cells into the primitive endoderm lineage
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Unr (upstream of N-ras) is a cytoplasmic RNA-binding protein with cold shock domains, involved in regulation of messenger RNA stability and translation. To address the biological role of Unr, we inactivated the unr gene by homologous recombination in mice and embryonic stem (ES) cells. Embryos deficient for Unr die at mid-gestation, and the main phenotypic defects observed, growth deficiency and absence of neural tube closure, suggest a role of Unr in the balance proliferation/differentiation during early development. Here, we report that in Unr-null ES cell cultures, we observed a greater proportion of partially differentiated colonies, together with dispersed, refractile cells with stellate morphology, reminiscent of primitive endoderm (PrE) cells. DNA microarray, immunostaining, and RNA analyses revealed that Unr-null ES cells express a set of PrE markers, including the GATA6 transcription factor, a key inducer of PrE. Although Unr-deficient cells did not downregulate the pluripotency regulators Oct4, Nanog and Sox2, they grew more slowly than the wild-type lines, and their clonogenicity was lower. Silencing of Unr by RNA interference in ES E14 (129 genetic background) resulted in similar phenotypic and molecular changes as those observed in unr-/- ES cells (C57Bl/6 background). Finally, we show that ectopic expression of Unr in unr-/- ES cells partially reverses the endoderm-specific gene expression and the differentiation phenotype.

Publication Title

The RNA-binding protein Unr prevents mouse embryonic stem cells differentiation toward the primitive endoderm lineage.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE64920
Caspase-2-dependent tumor suppression does not depend on the scaffold protein Raidd
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (Raidd) functions as a dual adaptor protein due to its bipartite nature, and is therefore thought to be a constituent of different multiprotein complexes including the PIDDosome, where it connects the cell death-related protease, Caspase-2, with the p53-induced protein with a death domain 1 (Pidd1). As such, Raidd has been implicated in DNA-damage-induced apoptosis as well as in tumor suppression, the latter based on its role as a direct activator of Caspase-2, known to delay lymphomagenesis caused by overexpression of c-Myc or loss of ATM kinase. As loss of Caspase-2 leads to an acceleration of tumor onset in the E-Myc mouse model we set out to interrogate the role of Raidd in this process in more detail. Our data obtained analyzing E-Myc/Raidd-/- mice indicate that Raidd is unable to protect from c-MYC-driven lymphomagenesis. Similarly, we failed to observe an effect of Raidd-deficiency on thymic lymphomagenesis induced by y-irradiation or fibrosarcoma development driven by 3-methylcholanthrene. The role of Caspase-2 as a tumor suppressor can therefore be uncoupled from its ability to interact and auto-activate upon binding to Raidd. Further, we provide supportive evidence that the tumor suppressive role of Caspase-2 is related to maintaining genomic integrity and allowing efficient p53-mediated signaling. Overall, our findings suggest that Raidd, although described to be the key-adapter allowing activation of the tumor suppressor Caspase-2, fails to suppress tumorigenesis in vivo.

Publication Title

The tumor-modulatory effects of Caspase-2 and Pidd1 do not require the scaffold protein Raidd.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP110597
Polycomb Repressive Complex 1 regulates transcription of active genes [RNAseq]
  • organism-icon Drosophila melanogaster
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

RNA expression was measured using RNA-seq Overall design: RNA levels in Mock-treated control Drosophila cells were compared to RNA levels in cells RNAi depleted for Ph, Sce, and Pc

Publication Title

Polycomb repressive complex 1 modifies transcription of active genes.

Sample Metadata Fields

Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact