refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 38 results
Sort by

Filters

Technology

Platform

accession-icon GSE53980
Beneficial Metabolic Effects of Rapamycin are Associated with Enhanced Regulatory Cells in Diet-Induced Obese Mice.
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of rapamycin effects on white adipose tissue at gene expression level. The hypothesis tested in the present study was that rapamycin could modify immune cell composition and inflammatory state of the adipose tissue of obese mice.

Publication Title

Beneficial metabolic effects of rapamycin are associated with enhanced regulatory cells in diet-induced obese mice.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE106800
Circadian misalignment induces fatty acid metabolism gene profiles and induces insulin resistance in human skeletal muscle.
  • organism-icon Homo sapiens
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Circadian misalignment, such as in shift work, has been associated with obesity and type 2 diabetes, however, direct effects of circadian misalignment on skeletal muscle insulin sensitivity and muscle molecular circadian clock have never been investigated in humans. Here we investigated insulin sensitivity and muscle metabolism in fourteen healthy young lean men (age 22.4 2.8 years; BMI 22.3 2.1 kg/m2 [mean SD]) after a 3-day control protocol and a 3.5-day misalignment protocol induced by a 12-h rapid shift of the behavioral cycle. We show that circadian misalignment results in a significant decrease in peripheral insulin sensitivity due to a reduced skeletal muscle non-oxidative glucose disposal (Rate of disappearance: 23.7 2.4 vs. 18.4 1.4 mg/kg/min; control vs. misalignment; p=0.024). Fasting glucose and FFA levels as well as sleeping metabolic rate were higher during circadian misalignment. Molecular analysis of skeletal muscle biopsies revealed that the molecular circadian clock was not aligned to the new behavourial rhythm, and microarray analysis revealed the human PPAR pathway as a key player in the disturbed energy metabolism upon circadian misallignement. Our findings may provide a mechanism underlying the increased risk of type 2 diabetes among shift workers.

Publication Title

Circadian misalignment induces fatty acid metabolism gene profiles and compromises insulin sensitivity in human skeletal muscle.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon SRP026382
A miR-155-ruled microRNA hierarchy in dendritic cell maturation and macrophage activation
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

MicroRNAs (miRNAs) are small RNAs that play important regulatory roles in many cellular pathways. MiRNAs associate with members of the Argonaute (Ago) protein family and bind to partially complementary sequences on mRNAs and induce translational repression or mRNA decay. MiRNA expression can be controlled by transcription factors and can therefore be cell type- or tissue-specific. Here we have analyzed miRNA expression profiles in murine monocyte-derived dendritic cells (DCs) and macrophages upon stimulation with LPS, LDL, eLDL and oxLDL to identify not only stimuli-specific miRNA, but also to identify a hierarchical miRNA system involving miR-155. For this, miR-155 knockout dendritic cells and macrophages were also sequenced using the same stimuli. Overall design: Sequencing of murine monocyte-derived dendritic cells and macrophages (each wild type and miR-155 knock out cells) matured and stimulated, respectively, by LPS, oxLDL, eLDL or LDL.

Publication Title

A miR-155-dependent microRNA hierarchy in dendritic cell maturation and macrophage activation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE62459
Heart expression data after short ischemia/reperfusion in WT, Reverb alpha KO and Reverb alpha antagonist-treated mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Daytime variation of perioperative myocardial injury in cardiac surgery and its prevention by Rev-Erbα antagonism: a single-centre propensity-matched cohort study and a randomised study.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62457
Heart expression data from WT and reverb alpha KO mice after short ischemia/reperfusion at ZT0, ZT12
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Nuclear receptor Reverb alpha is a component of circadian rythm which could be evolved in cardioprotection strategy. We test if pharmacological modulation of these target could be suitable for cardioprotection after ischemia reperfusion injury

Publication Title

Daytime variation of perioperative myocardial injury in cardiac surgery and its prevention by Rev-Erbα antagonism: a single-centre propensity-matched cohort study and a randomised study.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP019990
miRNAs associated with the different human Argonaute proteins
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

microRNAs (miRNAs) are small non-coding RNAs that function in literally all cellular processes. miRNAs interact with Argonaute (Ago) proteins and guide them to specific target sites located in the 3’ untranslated region (UTR) of target mRNAs leading to translational repression and deadenylation-induced mRNA degradation. Most miRNAs are processed from hairpin-structured precursors by the consecutive action of the RNase III enzymes Drosha and Dicer. However, processing of miR-451 is Dicer-independent and cleavage is mediated by the endonuclease Ago2. Here we have characterized miR-451 sequence and structure requirements for processing as well as sorting of miRNAs into different Ago proteins. Pre-miR-451 appears to be optimized for Ago2 cleavage and changes result in reduced processing. In addition, we show that the mature miR-451 only associates with Ago2 suggesting that mature miRNAs are not exchanged between different members of the Ago protein family. Based on cloning and deep sequencing of endogenous miRNAs associated with Ago1-3, we do not find evidence for miRNA sorting in human cells. However, Ago identity appears to influence the length of some miRNAs, while others remain unaffected. Overall design: Examination of miRNAs associated with endogenous human Ago1-4 in HeLa cells

Publication Title

microRNAs associated with the different human Argonaute proteins.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE110548
Exon expression profiling of de novo diffuse large B-cell lymphoma samples
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Exon expression profiling was performed on 37 clinical DLBCL samples and subsequently analyzed using alternative splice analysis of vairance (asANOVA) implemented in Partek Genomics Suite in order to identify alternative spliced genes.

Publication Title

Expression of NOTCH3 exon 16 differentiates Diffuse Large B-cell Lymphoma into molecular subtypes and is associated with prognosis.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE10749
Response of Arabidopsis cell culture to cyclopentenone oxylipins
  • organism-icon Arabidopsis thaliana
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE38048
E2F1 loss induces spontaneous tumour development in Rb-deficient epidermis
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The specific ablation of Rb1 gene in epidermis (RbF/F;K14cre) promotes proliferation and altered differentiation but does not produce spontaneous tumour development. These phenotypic changes are associated with increased expression of E2F members and E2F-dependent transcriptional activity. Here, we have focused on the possible dependence on E2F1 gene function. We have generated mice that lack Rb1 in epidermis in an inducible manner (RbF/F;K14creERTM). These mice are indistinguishable from those lacking pRb in this tissue in a constitutive manner (RbF/F;K14cre). In an E2F1-null background (RbF/F;K14creERTM; E2F1-/- mice), the phenotype due to acute Rb1 loss is not ameliorated by E2F1 loss, but rather exacerbated, indicating that pRb functions in epidermis do not rely solely on E2F1. On the other hand, RbF/F;K14creERTM;E2F1-/- mice develope spontaneous epidermal tumours of hair follicle origin with high incidence. These tumours, which retain a functional p19arf/p53 axis, also show aberrant activation of catenin/Wnt pathway. Gene expression studies revealed that these tumours display relevant similarities with specific human tumours. These data demonstrate that the Rb/E2F1 axis exerts essential functions not only in maintaining epidermal homeostasis, but also in suppressing tumour development in epidermis, and that the disruption of this pathway may induce tumour progression through specific alteration of developmental programs.

Publication Title

E2F1 loss induces spontaneous tumour development in Rb-deficient epidermis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10732
Identification of TGA-regulated genes in response to phytoprostane A1 and OPDA
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

12-oxo-phytodienoic acid (OPDA) and phytoprostane A1 (PPA1) are cyclopentenone oxylipins that are formed via the enzymatic

Publication Title

General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact