refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 153 results
Sort by

Filters

Technology

Platform

accession-icon GSE12049
Expression data from laminin alpha 2 chain deficient mice vs wild type
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mutations in the gene encoding laminin a2 chain cause congenital muscular dystrophy, MDC1A. In skeletal muscle, laminin a2 chain binds at least two receptor complexes; the dystrophin-glycoprotein complex and integrin a7b1. To gain insight into the molecular mechanisms underlying this disorder, we performed gene expression profiling of laminin a2 chain deficient mouse limb muscle. One of the down-regulated genes encodes a protein called calcium and integrin binding protein 2 (Cib2) whose expression and function is unknown. However, the closely related Cib1 has been reported to bind integrin aIIb and may be involved in outside-in-signaling in platelets. Since Cib2 might be a novel integrin a7b1 binding protein in muscle, we have studied Cib2 expression in the developing and adult mouse. Cib2 mRNA is mainly expressed in the developing central nervous system and in developing and adult skeletal muscle. In skeletal muscle Cib2 colocalizes with integrin a7B subunit at the sarcolemma and at the neuromuscular- and myotendinous junctions. Finally, we demonstrate that Cib2 is a calcium binding protein that interacts with integrin a7Bb1D. Thus, our data suggest a role for Cib2 as a cytoplasmic effector of integrin a7Bb1D signaling in skeletal muscle

Publication Title

Cib2 binds integrin alpha7Bbeta1D and is reduced in laminin alpha2 chain-deficient muscular dystrophy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE32140
The response of PBMCs and primary airway epithelial cells to Influenza and RSV virus
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 99 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Plasticity and virus specificity of the airway epithelial cell immune response during respiratory virus infection.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE34205
Transcriptional profile of PBMCs in patients with acute RSV or Influenza infection
  • organism-icon Homo sapiens
  • sample-icon 99 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To study the transcriptional profile of patients with acute RSV or Influenza infection,children of median age 2.4 months (range 1.5-8.6) hospitalized with acute RSV and influenza virus infection were offered study enrollment after microbiologic confirmation of the diagnosis. Blood samples were collected from them within 42-72 hours of hospitalization. We excluded children with suspected or proven polymicrobial infections, with underlying chronic medical conditions (i.e congenital heart disease, renal insufficiency), with immunodeficiency, or those who received systemic steroids or other immunomodulatory therapies. The RSV cohort consisted of 51 patients with median age of 2 months (range 1.5-3.9) and the influenza cohort had 28 patients with median age of 5.5 months (range 1.4-21). Control samples were obtained from healthy children undergoing elective surgical procedures or at outpatient clinic visits. To exclude viral co-infections we performed nasopharyngeal viral cultures of all subjects. We recruited 10 control patients for the RSV cohort with median age of 6.7 months (range 5-10), and 12 control patients for the influenza cohort with median age of18.5 months (range 10.5-26).

Publication Title

Plasticity and virus specificity of the airway epithelial cell immune response during respiratory virus infection.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE16446
Multifactorial Approach to Predicting Resistance to Anthracyclines
  • organism-icon Homo sapiens
  • sample-icon 120 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

PURPOSE: Validated biomarkers predictive of response/resistance to anthracyclines in breast cancer are currently lacking. The neoadjuvant TOP trial, in which patients with estrogen receptor (ER)-negative tumors were treated with anthracycline (epirubicin) monotherapy, was specifically designed to evaluate the predictive value of topoisomerase II (TOP2A) and to develop a gene expression signature to identify those patients who do not benefit from anthracyclines.

Publication Title

Multifactorial approach to predicting resistance to anthracyclines.

Sample Metadata Fields

Disease stage

View Samples
accession-icon GSE94074
Expression data of Hematopoietic progenitor and stem cells after 18h of culture with or without extracellular vesicles secreted by AFT stromal cells
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Hematopoietic progenitor and stem cells from bone marrow have been sorted by FACS (LSK, Lineage -, Sca1 + and cKit +) and co-culture during 18h without cytokines with or without extracellular vesicles (EV) secreted by AFT stromal cells.

Publication Title

Extracellular vesicles of stromal origin target and support hematopoietic stem and progenitor cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37209
Expression data from Paneth cells isolated from mice on calorie restricted or ad libitum diet
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Paneth cells recide in the intestinal crypt bottom and are part of the innate immunity and of the intestinal stem cell niche.

Publication Title

mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE19655
Reprogramming of anaerobic metabolism by the FnrS Small RNA
  • organism-icon Escherichia coli
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Small RNAs (sRNA) that act by base pairing with trans-encoded mRNAs modulate metabolism in response to a variety of environmental stimuli. Here, we describe an Hfq-binding sRNA (FnrS) whose expression is induced upon a shift from aerobic to anaerobic conditions and which acts to down regulate the levels of a variety of mRNAs encoding metabolic enzymes. Anaerobic induction in minimal medium depends strongly on FNR but is also affected by ArcA and CRP. Whole genome expression analysis showed that the levels of at least 32 mRNAs are down regulated upon FnrS overexpression, 15 of which are predicted to base pair with FnrS by TargetRNA. The sRNA is highly conserved across its entire length in numerous enterobacteria, and mutation analysis revealed that two separate regions of FnrS base pair with different sets of target mRNAs. The majority of the target genes previously reported to be down regulated in an FNR-dependent manner lack recognizable FNR binding sites. We thus suggest that FnrS extends the FNR regulon and increases the efficiency of anaerobic metabolism by repressing the synthesis of enzymes that are not needed under these conditions.

Publication Title

Reprogramming of anaerobic metabolism by the FnrS small RNA.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18517
Gene expression profiling in Al-tolerant and Al-sensitive soybean under aluminum stress
  • organism-icon Glycine max
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Soybean Genome Array (soybean)

Description

Gene expression profiling in soybean under aluminum stress: genes differentially expressed between Al-tolerant and Al-sensitive genotypes.

Publication Title

Mechanisms of magnesium amelioration of aluminum toxicity in soybean at the gene expression level.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE18518
Gene expression profiling in soybean under aluminum stress: mechanisms of magnesium amelioration of aluminum toxicity
  • organism-icon Glycine max
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Soybean Genome Array (soybean)

Description

Gene expression profiling in soybean under aluminum stress: mechanisms of magnesium amelioration of aluminum toxicity at gene expression level.

Publication Title

Mechanisms of magnesium amelioration of aluminum toxicity in soybean at the gene expression level.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE18423
Soybean transcriptome response to aluminum stress in roots of Al-tolerant genotype (PI 416937): time course
  • organism-icon Glycine max
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Soybean Genome Array (soybean)

Description

Gene expression profiling in soybean under aluminum stress: Transcriptome response to Al stress in roots of Al-tolerant genotype (PI 416937).

Publication Title

Identification of Aluminum Responsive Genes in Al-Tolerant Soybean Line PI 416937.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact