refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 8 of 8 results
Sort by

Filters

Technology

Platform

accession-icon GSE53604
Analysis of global changes in gene expression induced by human polynucleotide phosphorylase (hPNPaseold-35)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Human Polynucleotide Phosphorylase (hPNPaseold-35) is an evolutionarily conserved 35 exoribonuclease implicated in the regulation of numerous physiological processes like maintenance of mitochondrial homeostasis, mtRNA import and aging-associated inflammation.

Publication Title

Analysis of global changes in gene expression induced by human polynucleotide phosphorylase (hPNPase(old-35)).

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE46884
Gene Expression Signature of Human Polynucleotide Phosphorylase (hPNPaseold-35) in Melanoma
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Human Polynucleotide Phosphorylase (hPNPaseold-35) is an evolutionarily conserved 35 exoribonuclease implicated in the regulation of numerous physiological processes like maintenance of mitochondrial homeostasis, mtRNA import and aging-associated inflammation.

Publication Title

Identification of genes potentially regulated by human polynucleotide phosphorylase (hPNPase old-35) using melanoma as a model.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE44601
Expression data from SND1 knockdown clones of human HCC cell line QGY-7703
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Staphylococcal nuclease domain-containing protein 1 (SND1) is overexpressed in human hepatocellular carcinoma (HCC) and positively regulates development and progression of HCC. We established stable clones expressing SND1 shRNA in QGY-7703 cells and analyzed the gene expression profiles of a control clone and two SND1 knockdown clones to check what genes are regulated by SND1.

Publication Title

Staphylococcal nuclease domain containing-1 (SND1) promotes migration and invasion via angiotensin II type 1 receptor (AT1R) and TGFβ signaling.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE19815
Oncogenic Functions of the Transcription Factor LSF
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Overexpression of LSF in less aggressive hepatocellular carcinoma (HCC) cells resulted in highly aggressive, angiogenic and multi-organ metastatic tumors while inhibition of LSF significantly abrogated growth and metastasis of highly aggressive HCC cells in nude mice.

Publication Title

Transcription factor Late SV40 Factor (LSF) functions as an oncogene in hepatocellular carcinoma.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE34669
Astrocyte elevated gene-1 (AEG-1) promotes hepatocarcinogenesis: novel insights from a mouse model
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Astrocyte elevated gene-1 (AEG-1) as a positive inducer of hepatocellular carcinoma (HCC). Transgenic mice with hepatocyte-specific expression of AEG-1 were challenged with N-nitrosodiethylamine (DEN) and developed multinodular HCC with steatotic features. Thus, we have identified the follwoing AEG-1 functions: induction of steatosis, inhibition of senescence and activation of coagulation pathway to augment an aggressive hepatocarcinogenic phenotype.

Publication Title

Astrocyte elevated gene-1 promotes hepatocarcinogenesis: novel insights from a mouse model.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47189
Transcriptome-based network analysis reveals a spectrum model of human macrophage activation
  • organism-icon Homo sapiens
  • sample-icon 186 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptome-based network analysis reveals a spectrum model of human macrophage activation.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE46903
Transcriptome-based network analysis reveals a spectrum model of human macrophage activation [Expression]
  • organism-icon Homo sapiens
  • sample-icon 186 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Macrophage activation is associated with profound transcriptional reprogramming. Although much progress has been made in the understanding of macrophage activation, polarization and function, the transcriptional programs regulating these processes remain poorly characterized. We stimulated human macrophages with diverse activation signals, acquiring a dataset of 299 macrophage transcriptomes. Analysis of this dataset revealed a spectrum of macrophage activation states extending the current M1 versus M2-polarization model. Network analyses identified central transcriptional regulators associated with all macrophage activation complemented by regulators related to stimulus-specific programs. Applying these transcriptional programs to human alveolar macrophages from smokers and patients with chronic obstructive pulmonary disease (COPD) revealed an unexpected loss of inflammatory signatures in COPD patients. Finally, by integrating murine data from the ImmGen project we propose a refined, activation-independent core signature for human and murine macrophages. This resource serves as a framework for future research into regulation of macrophage activation in health and disease.

Publication Title

Transcriptome-based network analysis reveals a spectrum model of human macrophage activation.

Sample Metadata Fields

Subject, Time

View Samples
accession-icon SRP031496
Transcriptome-based network analysis reveals a spectrum model of human macrophage activation [miRNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiScanSQ

Description

Macrophage activation is associated with profound transcriptional reprogramming. Although much progress has been made in the understanding of macrophage activation, polarization and function, the transcriptional programs regulating these processes remain poorly characterized. We stimulated human macrophages with diverse activation signals, acquiring a dataset of 299 macrophage transcriptomes. Analysis of this dataset revealed a spectrum of macrophage activation states extending the current M1 versus M2-polarization model. Network analyses identified central transcriptional regulators associated with all macrophage activation complemented by regulators related to stimulus-specific programs. Applying these transcriptional programs to human alveolar macrophages from smokers and patients with chronic obstructive pulmonary disease (COPD) revealed an unexpected loss of inflammatory signatures in COPD patients. Finally, by integrating murine data from the ImmGen project we propose a refined, activation-independent core signature for human and murine macrophages. This resource serves as a framework for future research into regulation of macrophage activation in health and disease. Overall design: Since transcriptional programs are further modulated on several levels including miRNAs we assessed the global spectrum of miRNA expression by miRNA-Seq in macrophages stimulated with IFN?, IL4 or with the combination of TNFa, PGE2 and P3C

Publication Title

Transcriptome-based network analysis reveals a spectrum model of human macrophage activation.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact