refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 118 results
Sort by

Filters

Technology

Platform

accession-icon GSE58643
An epigenetically distinct breast cancer cell subpopulation promotes collective invasion
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

A distinct highly invasive subpopulation was identified in breast cancer cell lines. The molecular characteristics of these cells was investigated, revealing a set of genes whose high expression confers the ability to invade.

Publication Title

ΔNp63α Promotes Breast Cancer Cell Motility through the Selective Activation of Components of the Epithelial-to-Mesenchymal Transition Program.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE77984
SOX17 regulates cholangiocyte differentiation and acts as a tumour suppressor in cholangiocarcinoma
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Background and aims: Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with features of biliary tract differentiation. Incidence is increasing worldwide and these cancers collectively represent the second most common primary liver tumour. CCAs are characterized by genetic and epigenetic alterations that determine their pathogenesis. Hypermethylation of the SOX17 promoter was recently reported in human CCA tumours. SOX17 seems to be a key transcription factor for biliary embryogenesis. Here, we evaluated the role of SOX17 in cholangiocyte differentiation and in cholangiocarcinogenesis. Methods: SOX17 expression and function was evaluated during the differentiation of human induced pluripotent stem cells (iPSC) into cholangiocytes, in the dedifferentiation of normal human cholangiocytes (NHC) and in cholangiocarcinogenesis. Lentiviruses overexpressing or knocking-down SOX17 (Lent-SOX17 and Lent-shRNA-SOX17, respectively) were used. Gene expression arrays were performed. Results: SOX17 expression is highly induced in the later stages of cholangiocyte differentiation from iPSC, and mediates the acquisition of the biliary markers cytokeratin (CK) 7 and 19, as well as fibronectin. In addition, SOX17 becomes progressively downregulated in NHC over serial cell passages in vitro and this event is associated with cellular senescence; however, experimental SOX17 knocking-down in differentiated NHC decreased the expression of both CK7 and 19 without affecting cellular senescence. SOX17 expression is reduced in CCA cells compared to NHC, as well as in human CCA tissue compared to human gallbladder tissue or NHC. In a murine xenograft model, overexpression of SOX17 in CCA cells decreased their tumorigenic capacity related to increased oxidative stress and apoptosis. Interestingly, overexpression of SOX17 in NHC did not affect their survival. Moreover, SOX17 overexpression inhibited the Wnt/-catenin-dependent proliferation in CCA cells and was associated with upregulation of biliary epithelial markers and restoration of the primary cilium length. Both Wnt3a and TGF1 decreased SOX17 expression in NHC in a DNMT1-dependent manner. Inhibition of DNMT1 in CCA cells with siRNAs or pharmacological drugs upregulated SOX17 expression. Conclusion: SOX17 regulates the cholangiocyte phenotype and becomes epigenetically downregulated in CCA. SOX17 acts as a tumour suppressor in CCA, and restoration of its expression may have important therapeutic value.

Publication Title

SOX17 regulates cholangiocyte differentiation and acts as a tumor suppressor in cholangiocarcinoma.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE20607
Genome-wide expression profiles of primary human SAECs infected with different adenovirus mutants.
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Full title: Genome-wide expression profiles of primary human small airway epithelial cells (SAECs) infected with different adenovirus mutants.

Publication Title

Heterochromatin silencing of p53 target genes by a small viral protein.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP185847
Single-cell analysis of KPC pancreatic tumor cells
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Single-cell analysis of KPC pancreatic tumor cells Overall design: Evaluate the single-cell transcriptomic landscape in 3 KPf/fC tumors

Publication Title

A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP185634
Single-cell RNAseq data for pancreatic ductal adenocarcinoma tumor from KPC mice
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

mPDAC tumors of KPC mice Overall design: medium and large size tumors

Publication Title

A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE93970
CD54-mediated interaction with pro-inflammatory macrophages increases the immunosuppresive function of human mesenchymal stromal cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Mesenchymal stromal cells (MSCs) sense and modulate inflammation and represent potential clinical treatment for immune disorders. However, many details of the bidirectional interaction between MSCs and the innate immune comaprtment are still unsolved. Here we describe an unconventional but functional interaction between pro-inflammatory classically activated macrophages (M1M) and MSCs, with CD54 playing a central role. CD54 was upregulated and enriched specifically at the contact area between M1M and MSCs. Moreover, the specific interaction induced calcium signaling and increased the immunosuppressive capacities of MSCs dependent on CD54 mediation. Our data demonstrate that MSCs can detect an inflammatory microenvironment via a direct and physical interaction with innate immune cells. This finding opens new perspectives for MSC-based cell therapy.

Publication Title

CD54-Mediated Interaction with Pro-inflammatory Macrophages Increases the Immunosuppressive Function of Human Mesenchymal Stromal Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48540
CD146 expression in mesenchymal stem cells is associated with vascular smooth muscle commitment
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Bone-marrow mesenchymal stem cells (MSCs) are plastic adherent cells that can differentiate into various tissue lineages, including osteoblasts, adipocytes and chondrocytes. However, this progenitor property is not shared by all cells within the MSC population. In addition, MSCs vary in their proliferation capacities and expression of markers. Because of heterogeneity of CD146 expression in the MSC population, we compared CD146-/Low and CD146High cells under clonal and non-clonal (sorted MSCs) conditions to determine whether this expression is associated with specific functions. CD146-/Low and CD146High MSCs did not differ in colony-forming unit-fibroblast number, osteogenic and adipogenic differentiation or in vitro hematopoietic supportive activity. However, CD146-/Low clones proliferated slightly but significantly faster than did CD146High clones. In addition, a strong expression of CD146 molecule was associated with a commitment towards a vascular smooth muscle cell lineage with upregulation of calponin-1 expression. Thus, within a bone-marrow MSC population, certain subpopulations characterized by high expression of CD146, are committed toward a vascular smooth muscle cell lineage.

Publication Title

CD146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP014456
Depletion of stromal cells expressing fibroblast activation protein-a from skeletal muscle and bone marrow results in cachexia and anemia
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Fibroblast activation protein-a (FAP) identifies stromal cells of mesenchymal origin in human cancers and chronic inflammatory lesions. In mouse models of cancer, they have been shown to be immune suppressive, but studies of their occurrence and function in normal tissues have been limited. With a transgenic mouse line permitting the bioluminescent imaging of FAP(+) cells, we find that they reside in most tissues of the adult mouse. FAP(+) cells from three sites, skeletal muscle, adipose tissue, and pancreas, have highly similar transcriptomes, suggesting a shared lineage. FAP(+) cells of skeletal muscle are the major local source of follistatin, and in bone marrow they express Cxcl12 and KitL. Experimental ablation of these cells causes loss of muscle mass and a reduction of B-lymphopoiesis and erythropoiesis, revealing their essential functions in maintaining normal muscle mass and hematopoiesis, respectively. Remarkably, these cells are altered at these sites in transplantable and spontaneous mouse models of cancer-induced cachexia and anemia. Thus, the FAP(+) stromal cell may have roles in two adverse consequences of cancer: their acquisition by tumors may cause failure of immunosurveillance, and their alteration in normal tissues contributes to the paraneoplastic syndromes of cachexia and anemia. Overall design: FAP+ cells were sorted from two mesenchymal tissues, visceral adipose and skeletal muscle, and from an epithelial organ, the pancreas. These were compared to MEFs. Cells were isolated in duplicate experiments and these were analysed separately. These were compared to previously published publically available CD4+ T-cell subset data.

Publication Title

Depletion of stromal cells expressing fibroblast activation protein-α from skeletal muscle and bone marrow results in cachexia and anemia.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE59384
Expression data from mouse adult epidermis in response to physical or immune mediated damage
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Whether epidermal factors play a primary role in immune-mediated skin diseases such as psoriasis is unknown. We now show that the pro-differentiation transcription factor Grainyhead-like 3 (GRHL3), essential during epidermal development but dispensable in adult skin homeostasis, is required for barrier repair after adult epidermal injury. Consistent with activation of a GRHL3-regulated repair pathway in psoriasis, we find GRHL3 up-regulation in lesional skin where GRHL3 binds known epidermal differentiation gene targets. Furthermore, we show the functionality of this pathway in the Imiquimod mouse model of immune-mediated epidermal hyperplasia where loss of Grhl3 exacerbates the epidermal damage response, conferring greater sensitivity to disease induction, delayed resolution of epidermal lesions, and resistance to anti-IL-22 therapy. ChIP-seq and gene expression profiling studies show that while GRHL3 regulates differentiation genes both in development and during repair from immune-mediated damage, it targets distinct sets of genes in the two processes. In particular, GRHL3 suppresses a number of alarmin and other pro-inflammatory genes after immune injury. This study identifies a GRHL3-regulated epidermal barrier repair pathway that suppresses disease initiation and helps resolve existing lesions in immune-mediated epidermal hyperplasia.

Publication Title

A GRHL3-regulated repair pathway suppresses immune-mediated epidermal hyperplasia.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE55537
CD14 and complement crosstalk and largely mediate the transcriptional response to Escherichia coli in human whole blood as revealed by DNA microarray
  • organism-icon Homo sapiens
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Systemic inflammation like in sepsis is still lacking specific diagnostic markers and effective therapeutics. The first line of defense against intruding pathogens and endogenous damage signals is pattern recognition by e.g., complement and Toll-like receptors (TLR). Combined inhibition of a key complement component (C3 and C5) and TLR-co-receptor CD14 has been shown to attenuate certain systemic inflammatory responses. Using DNA microarray and gene annotation analyses, we aimed to decipher the effect of combined inhibition of C3 and CD14 on the transcriptional response to bacterial challenge in human whole blood. Importantly, combined inhibition reversed the transcriptional changes of 70% of the 2335 genes which significantly responded to heat-inactivated Escherichia coli by on average 80%. Single inhibition was less efficient (p<0.001) but revealed a suppressive effect of C3 on 21% of the responding genes which was partially counteracted by CD14. Furthermore, CD14 dependency of the Escherichia coli-induced response was increased in C5-deficient compared to C5-sufficient blood. The observed crucial distinct and synergistic roles for complement and CD14 on the transcriptional level correspond to their broad impact on the inflammatory response in human blood, and their combined inhibition may become inevitable in the early treatment of acute systemic inflammation.

Publication Title

CD14 and complement crosstalk and largely mediate the transcriptional response to Escherichia coli in human whole blood as revealed by DNA microarray.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact