refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 57 results
Sort by

Filters

Technology

Platform

accession-icon GSE9576
Gene expression profiling of classical midgut carcinoid primary tumors and liver metastasis
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We identify genes presenting a specific expression profile in midgut carcinoid cells, primary carcinoids tumors and liver metastasis were gene profiled.

Publication Title

Novel markers for enterochromaffin cells and gastrointestinal neuroendocrine carcinomas.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE14256
Human fibroblast stimulation with PDGF-BB or b-FGF
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

We analyzed gene expression in human fibroblasts stimulated by platelet-derived growth factor-BB (PDGF-BB) or basic fibroblast growth factor (bFGF) for 1h and 24h. The results of two independent experiments were merged. SAM analysis identified 116 relevant probe sets. Hierarchical clustering of these probe sets showed divergent early gene regulation by PDGF and FGF but overlapping late response. We first analyzed genes commonly regulated by PDGF-BB and b-FGF more than 2 fold after 24h of stimulation and we found that these two growth factors repressed FOXO.

Publication Title

The transcription of FOXO genes is stimulated by FOXO3 and repressed by growth factors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15237
Effect of imatinib on FIP1L1-PDGFRA-expressing EOL1 cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The Eol1 cell line has been derived from a patient with chronic eosiniphilic leukemia. Eol1 cells express the FIP1L1-PDGFRalpha oncogene. Inhibition of FIP1L1-PDGFRalpha with imatinib mesylate (Glivec) blocks proliferation and survival of the cells. We performed microarray expression analysis to identify genes specifically regulated by FIP1L1-PDGFRalpha using imatinib-treated cells as baseline. The list of regulated genes was consistent with the activation of STAT trancription factors by FIP1L1-PDGFRA.

Publication Title

Transcription factor regulation can be accurately predicted from the presence of target gene signatures in microarray gene expression data.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE28698
Gene expression profiling of imatinib-treated and untreated human Hematopoetic progenitors expressing the ETV6-PDGFRB oncogene
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In order to investigate the mechanism whereby TEL-PDGF-beta (ETV6-PDGFRB) interferes with human hematopoietic progenitors proliferation and differentiation, we analyzed the gene expression response downstream this oncogene. CD34+ cells infected with lentivirus coding for TEL-PDGFRb were cultured for 7 days in the absence of cytokines. Using Affymetrix microarrays, we compared gene expression in these cells and in cells treated for 4 h with low dose imatinib (Glivec), a potent PDGFR inhibitor, to switch off TEL-PDGFRb signaling.

Publication Title

ETV6-PDGFRB and FIP1L1-PDGFRA stimulate human hematopoietic progenitor cell proliferation and differentiation into eosinophils: the role of nuclear factor-κB.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE44810
Ba/F3 cells expressing ETV6-PDGFRb and FIP1L1-PDGFRa treated or not with Glivec
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Gene expression profiles in Ba/F3 cells expressing ETV6-PDGFRB, FIP1L1-PDGFRA or a control vector, treated or not with imatinib (Glivec)

Publication Title

The expression of the tumour suppressor HBP1 is down-regulated by growth factors via the PI3K/PKB/FOXO pathway.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE31727
the influence of a modification of the gut microbiota composition on the hepatic steatosis induced by n-3 polyunsaturated fatty acid (PUFA) depletion
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

in the present study, we evaluated whether microbiota modulation is able to restore hepatic steatosis induced by n-3 PUFA depletion in mice. For this purpose, mice were fed during three months with a n-3 PUFA-depleted diet (presenting a high n-6/n-3 PUFA ratio), and then supplemented with fructooligosaccharides (FOS, 0.25g/day/mice), a prebiotic, during the last ten days of the experiment (DEF/FOS). In the same time, some n-3 PUFA-depleted mice were returned on a control diet during the last 10 days of treatment (DEF/CT) to compare the effect of FOS supplementation to a restored intake in n-3 PUFA. Microarray analyses were performed to identify the molecular targets modified by FOS supplementation in the liver of n-3 PUFA depleted mice. These mice were compared to control mice (fed a control diet during the 112 days of experiment) and to n-3 PUFA-depleted mice (fed a n-3 PUFA-depleted diet during the 112 days of experiment) for which the results have been previously published (Pachikian B.D. et al. PLoS One. 2011;6(8):e23365, accession number GSE26986)

Publication Title

Prebiotic approach alleviates hepatic steatosis: implication of fatty acid oxidative and cholesterol synthesis pathways.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE56852
Gene expression profiling from pooled samples of subcutaneous adipose tissue of NAPE-WT or NAPE-KO mice fed either with a control diet or a high-fat diet.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Mice knocked-out or wild type for the NAPE PLD gene specifically in adipose tissue, were recruited for this expression profiling experiment. Each group of mice (WT versus cKO) were fed with a control diet or a high fat diet. Then mice were sacrificed and adipose tissue samples form the subcutaneous adipose tissue were processed for RNA extraction. Total RNA of each sample was then pooled with those of the same group and treatment for microarray hybridization.

Publication Title

Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE26986
The consequences of n-3 polyunsaturated fatty acids (PUFA) depletion on hepatic lipid metabolism in mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In the present study, we investigated the consequences of n-3 polyunsaturated fatty acids (PUFA) depletion on hepatic lipid metabolism in mice fed during three months with a diet presenting a high n-6/n-3 PUFA ratio to induce n-3 PUFA depletion. Microarray analyses were performed to identify the molecular targets involved in the development of hepatic steatosis associated with n-3 PUFA depletion.

Publication Title

Hepatic n-3 polyunsaturated fatty acid depletion promotes steatosis and insulin resistance in mice: genomic analysis of cellular targets.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE73489
Gene expression profiling from pooled samples of liver tissue of liver MyD88 WT mice and MyD88 liver specific KO mice fed either with a control diet or a high-fat diet.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Mice wild type or knocked-out for the MyD88 gene specifically in liver, were recruited for this expression profiling experiment. Each group of mice (WT versus LKO) were fed with a control diet or a high fat diet. Then mice were sacrificed and liver samples form were processed for RNA extraction. Total liver RNA of each sample was then pooled with those of the same group and treatment for microarray hybridization.

Publication Title

Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE13130
Langerhans cells from aryl hydrocarbon receptor deficient mice
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

The arylhydrocarbon receptor is a ligand inducible transcription factor. Known to control xenobiotic metabolizing enzymes, it also affects - depending on the cell type - numerous other genes, either directly or indirectly. With respect to the immune system, persistent activation leads to immunosuppression. We asked how the AhR is involved in Langerhans cells. These antigen presenting cells of the skin are responsible for allergies against chemicals (thus xenobiotic metabolism might be relevant) and a recently detected endogenous ligand, FICZ made by UVB radiation from tryptophane, is particularly abundant in the skin.

Publication Title

Langerhans cell maturation and contact hypersensitivity are impaired in aryl hydrocarbon receptor-null mice.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact