refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 48 results
Sort by

Filters

Technology

Platform

accession-icon GSE19401
Expression data from murine follicular dendritic cells
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Germinal centers (GCs) are clusters of activated B cells built on stromal cells known as follicular dendritic cells (FDCs). In the Peyers patches (PPs), GCs are chronically induced by bacteria and are the major sites for generation of gut IgA immune responses. Whether FDCs directly contribute to the IgA production in PP GCs is unknown.

Publication Title

The sensing of environmental stimuli by follicular dendritic cells promotes immunoglobulin A generation in the gut.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18746
Nave B cells vs germina center B cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Activation-induced cytidine deaminase (AID) is essential for the generation of antibody memory but also targets oncogenes among others. We investigated the transcriptional regulation of the AID gene, Aicda, in the class switchinducible CH12F3-2 cells, and found that the Aicda regulation involves derepression by several layers of positive regulatory elements in addition to the 5 promoter region. The 5 upstream region contains functional motifs for the response to signaling by cytokines, CD40-ligand, or stimuli that activate NF-B. The first intron contains functional binding elements for the ubiquitous silencers c-Myb and E2f and for B cellspecific activator Pax5 and E-box-binding proteins.

Publication Title

B cell-specific and stimulation-responsive enhancers derepress Aicda by overcoming the effects of silencers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE97504
Expression data of colonic epithelial cells colonized with B. theta
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The gut microbiota is essential for several aspects of host physiology such as metabolism, epithelial barrier function and immunity. Previous studies have revealed that host immune system as well as diet and other environmental factors have a strong impact on the composition and activity of gut microbiota, but the molecular requirements for such functional regulation remain unknown. We show that the bacteria belonging to phylum Bacteroidetes acquire their symbiotic activity in the colonic mucus, depending on a newly characterized molecular family encoded within the polysaccharide utilization loci (PUL), which we have named Mucus-Associated Functional Factor (MAFF).

Publication Title

IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP049087
IRF4/BATF and interleukin-33 orchestrate development and maintenance of adipose tissue resident regulatory T cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

To understand the differentiation of effector Tregs in more detail, we have performed transcriptional profiling of central Tregs and effector Tregs, based on Blimp1 expression. We performed RNA-sequencing of Foxp3+ regulatory T cells, comparing Blimp1/GFP+ and Blimp1/GFP- cells Overall design: Three biologically independent samples for each condition were sequenced (condition 1: CD4+ CD25high Blimp1/GFP+; condition 2: CD4+ CD25high Blimp1/GFP-); cells were sorted from pooled spleens and lymphnodes of Blimp1/GFP reporter mice

Publication Title

The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51824
Reversible and irreversible differentiation of cardiac fibroblasts
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

Aim: Differentiation of cardiac fibroblasts (Fb) into myofibroblasts (MyoFb) is responsible for connective tissue buildup in myocardial remodeling. We examined reversibility of MyoFb differentiation. Methods and Results: Adult rat cardiac Fb were cultured on a plastic substratum providing mechanical stress, with conditions to obtain different Fb phenotypes. Fb spontaneously differentiated to proliferating MyoFb (p-MyoFb) with stress fiber formation decorated with alpha-smooth muscle actin (-SMA). Transforming growth factor-1 (TGF-1) promoted terminal differentiation into -SMA positive MyoFb showing near absence of proliferation i.e. non-p-MyoFb (2-fold increase in cell number after 12 days vs 11-fold for p-MyoFb). SD-208, a TGF--receptor-I kinase blocker, inhibited p-MyoFb differentiation as shown by stress fiber absence, low levels of -SMA protein expression, and high levels of proliferation (32-fold increase after 12 days). Fb seeded in collagen matrices induced no contraction, whereas p-MyoFb and non-p-MyoFb induced 2.5- and 4-fold contraction. Fb produced low levels of collagen and secreted high levels of IL-10. Non-p-MyoFb showed high collagen production and high MCP-1 and TIMP-1 secretion. Transcriptome analysis indicated differential gene expression between all phenotypes. Dedifferentiation of p-MyoFb, but not of non-p-MyoFb, was induced by SD-208 despite maintained stress, shown by stress fiber de-polymerization in 30% of p-MyoFb vs in 8% of non-p-MyoFb. Stress fiber de-polymerization could be induced by mechanical strain release in p-MyoFb and non-p-MyoFb (2 day culture in unrestrained 3-D collagen matrices). Only p-MyoFb showed true dedifferentiation after long-term 3-D culture. Conclusions: Both reduction in mechanical strain and TGF--receptor-I kinase inhibition can reverse p-MyoFb differentiation but not in non-p-MyoFb.

Publication Title

Reversible and irreversible differentiation of cardiac fibroblasts.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE45804
Gene expression data from MCF-7 cells treated with Lacciac Acid A
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Lacciac Acid A was indentified as an inhibitor of DMNT1. MCF-7 cells were treated with Lacciac Acid A (200 uM) for 5 days. Changes in gene expression were identified by using Affymetrix Human gene ST1.0 arrays. We used microarrays to determine global changes in gene expression upon treatment with Lacciac Acid A an inhibitor of DMNT1.

Publication Title

Laccaic acid A is a direct, DNA-competitive inhibitor of DNA methyltransferase 1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18690
SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Global expression analysis of neural crest-like skin-derived precursors (SKPs) and Sox2-positive follicle dermal cells that SKPs originate from.

Publication Title

SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44708
Optic nerve crush induces spatial and temporal gene expression patterns in optic nerve and retina of BALB/cJ mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Optic nerve crush induces spatial and temporal gene expression patterns in retina and optic nerve of BALB/cJ mice.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE44705
Optic nerve crush induces spatial and temporal gene expression patterns in optic nerve of BALB/cJ mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Central nervous system (CNS) trauma and neurodegenerative disorders trigger a cascade of cellular and molecular events resulting in neuronal apoptosis and regenerative failure. The pathogenic mechanisms and gene expression changes associated with these detrimental events can be effectively studied using a rodent optic nerve crush (ONC) model. The purpose of this study was to use a mouse ONC model to: (a) evaluate changes in optic nerve (ON) gene expression, (b) identify neurodegenerative pathogenic pathways and (c) discover potential new therapeutic targets.

Publication Title

Optic nerve crush induces spatial and temporal gene expression patterns in retina and optic nerve of BALB/cJ mice.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE44707
Optic nerve crush induces spatial and temporal gene expression patterns in retina of BALB/cJ mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Central nervous system (CNS) trauma and neurodegenerative disorders trigger a cascade of cellular and molecular events resulting in neuronal apoptosis and regenerative failure. The pathogenic mechanisms and gene expression changes associated with these detrimental events can be effectively studied using a rodent optic nerve crush (ONC) model. The purpose of this study was to use a mouse ONC model to: (a) evaluate changes in retina gene expression, (b) identify neurodegenerative pathogenic pathways and (c) discover potential new therapeutic targets.

Publication Title

Optic nerve crush induces spatial and temporal gene expression patterns in retina and optic nerve of BALB/cJ mice.

Sample Metadata Fields

Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact