Whole transcriptome for PRMT6 knock-out and control NT2/D1 cells with and without ATRA (all-trans retinoic acid) was sequenced. These samples were compared to each other to find differentially regulated genes and PRMT6-dependent transcriptome in pluripotency and differentiating cells. Overall design: Examining of PRMT6-dependent transcriptome in NT2/D1 cells using RNAseq.
Genomic Location of PRMT6-Dependent H3R2 Methylation Is Linked to the Transcriptional Outcome of Associated Genes.
Specimen part, Cell line, Subject
View SamplesYY1 is a ubiquitously expressed transcription factor that has been demonstrated to be essential for pro-B cell development. However, the role of YY1 in other B cell populations has never been investigated. It has been proposed that YY1 is a key regulator for the germinal center B cell program since the YY1 motif was present in much higher frequency in germinal center B cell signature genes than signature genes of other B cell subsets. Indeed, in accord with this prediction, we demonstrated that deletion of YY1 by Cg1-Cre completely prevented differentiation of naïve B cells into germinal center B cells and plasma cells after antigen stimulation. To determine if YY1 was also required for the differentiation of other B cell populations, we deleted YY1 with CD19-Cre and found that all peripheral B cell subsets including B1 B cells require YY1 for their differentiation. By deleting YY1 acutely with ER-Cre, we demonstrated that all B cell subsets require YY1 for their maintenance. ChIP-seq shows that YY1 predominantly binds to promoters, and pathway analysis of the genes which bind YY1 show that they are enriched in ribosomal functions, mitochondrial functions such as bioenergetics, and functions related to transcription, such as mRNA splicing, metabolism of RNA. By RNA-seq analysis of differentially expressed genes, we demonstrated that YY1 normally activates genes involved in mitochondrial bioenergetics, while it normally downregulates genes involved in transcription, mRNA splicing, NF-kB signaling pathways, AP-1 transcription factor network, chromatin remodeling, cytokine signaling pathways, cell adhesion, cell proliferation and c-Myc targets. Overall design: Total RNA was prepared from RAG-/-pro-B cells, RAG-/-YY1f/f x mb1-Cre pro-B cells, RAG-/- µ+ pre-B cells, C57BL/6 follicular B cells, and C57BL/6 GC B cells. RNA was extracted using TRIzol (Life Technologies) and genomic DNA was eliminated using the genomic DNA wipeout buffer in the QuantiTect Reverse transcription kit (Qiagen). A final purification of the RNA was performed with the RNeasy kit (Qiagen). Ribosomal RNA was eliminated using Ribo-Zero Magnetic Gold Kit (Illumina).RNA samples were submitted to the Next Generation Sequencing Core, where they were processed with the NEBNext Ultra Directional RNA Library Prep Kit for Illumina and sequenced on the Illumina HiSeq. Three independent RNA-seq samples were used for RAG-/- pro-B and RAG-/- YY1f/f x mb1-Cre pro-B cells, and two samples for the other cell types.
YY1 plays an essential role at all stages of B-cell differentiation.
Sex, Specimen part, Cell line, Subject
View SamplesThe hormone prolactin is implicated in the pathogenesis of breast cancer, and a subset of prolactin-induced gene expression is mediated by HDAC6 activity.
HDAC6 Deacetylates HMGN2 to Regulate Stat5a Activity and Breast Cancer Growth.
Sex, Specimen part, Cell line
View SamplesA diverse antibody repertoire is formed through the rearrangement of V, D, and J segments at the immunoglobulin heavy chain (Igh) loci. The C57BL/6 murine Igh locus has over 100 functional VH gene segments that can recombine to a rearranged DJH. While the non-random usage of VH genes is well documented, it is not clear what elements determine recombination frequency. To answer this question we conducted deep sequencing of 5’-RACE products of the Igh repertoire in pro-B cells, amplified in an unbiased manner. ChIP-seq results for several histone modifications and RNA polymerase II binding, RNA-seq for sense and antisense non-coding germline transcripts, and proximity to CTCF and Rad21 sites were compared to the usage of individual V genes. Computational analyses assessed the relative importance of these various accessibility elements. These elements divide the Igh locus into four epigenetically and transcriptionally distinct domains, and our computational analyses reveal different regulatory mechanisms for each region. Proximal V genes are relatively devoid of active histone marks and non-coding RNA in general, but having a CTCF site near their RSS is critical, suggesting that position near the base of the chromatin loops is important for rearrangement. In contrast, distal V genes have high levels of histone marks and non-coding RNA, which may compensate for their poorer RSS and for being distant from CTCF sites. Thus, the Igh locus has evolved a complex system for the regulation of V(D)J rearrangement that is different for of each the four domains that comprise this locus. Overall design: RNA was extracted from C57BL/6 RAG-/- pro-B cells using Trizol® (Life Technologies Corp., Carlsbad CA) and genomic DNA was eliminated using the genomic DNA wipeout buffer in the QuantiTect Reverse transcription kit (QIAGEN). A final purification of the RNA was performed with the RNeasy kit from QIAGEN. For each sample, 100 ng of total RNA was used to make RNASeq libraries using the NuGEN Encore Complete DR kits following manufacturer''s recommended protocols. Sequencing libraries were gel purified to ensure insert sizes were larger than 100 bp in length and sequenced on an Ilumina HiSeq2000 for 100 bases plus 7 bases for indexing.
Deep sequencing of the murine IgH repertoire reveals complex regulation of nonrandom V gene rearrangement frequencies.
Specimen part, Cell line, Subject
View SamplesThe aim of the experiment is provide a reference dataset for placing wheat grain transcriptome experiments in a developmental context. RNA was isolated from whole grain tissue of replicate wheat cv. Hereward plants at 6, 8, 10, 12, 14, 17, 21, 28, 35 and 42 days after anthesis (daa). Also supplied are array data for grain sampled at 14, 21 and 28 daa under control, hot, dry and hot&dry conditions to illustrate the importance of developmental context in interpretation.
Transcriptome analysis of grain development in hexaploid wheat.
Age, Specimen part, Time
View SamplesComparison of mRNA expression profiles of LT-HSCs with or without mutations in JAK2 and Ezh2 by RNA sequencing. LT-HSC mRNA was extracted from six different transgenic mice (SclCre, SclCre;Ezh2+/-, SclCre;Ezh2-/-, SclCre; JAK2V617F, SclCre; JAK2V617F;Ezh2+/-, SclCre; JAK2V617F;Ezh2-/-) 10 weeks after tamoxifen injection. Our study represents the first detailed analysis of mRNA expression profile of LT-HSC with or without mutations in JAK2 and Ezh2 , with biologic replicates, generated by RNA-seq technology. Our results revealed that mRNA expression profile of LT-HSC with different genotype showed specific gene expression patterns, which allows to do biological comprehensive and quantitative analysis for hematopoiesis. Overall design: LT-HSCs mRNA profiles six different transgenic mice (SclCre, SclCre;Ezh2+/-, SclCre;Ezh2-/-, SclCre; JAK2V617F, SclCre; JAK2V617F;Ezh2+/-, SclCre; JAK2V617F;Ezh2-/-) were generated by deep sequencing.
Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis.
Sex, Subject
View SamplesComparison of mRNA expression profiles of MEPs with or without mutations in JAK2 and Ezh2 by RNA sequencing. MEPs mRNA was extracted from six different transgenic mice (SclCre, SclCre;Ezh2+/-, SclCre;Ezh2-/-, SclCre; JAK2V617F, SclCre; JAK2V617F;Ezh2+/-, SclCre; JAK2V617F;Ezh2-/-) 10 weeks after tamoxifen injection. Our study represents the first detailed analysis of mRNA expression profile of MEP with or without mutations in JAK2 and Ezh2 , with biologic replicates, generated by RNA-seq technology. Our results revealed that mRNA expression profile of MEP with different genotype showed specific gene expression patterns, which allows to do biological comprehensive and quantitative analysis for hematopoiesis. Overall design: MEPs mRNA profiles six different transgenic mice (SclCre, SclCre;Ezh2+/-, SclCre;Ezh2-/-, SclCre; JAK2V617F, SclCre; JAK2V617F;Ezh2+/-, SclCre; JAK2V617F;Ezh2-/-) were generated by deep sequencing.
Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis.
Sex, Subject
View SamplesDuring limb development, fibroblast growth factors (FGFs) govern proximal-distal outgrowth and patterning. FGFs also synchronize developmental patterning between the proximal-distal and anterior-posterior axes by maintaining sonic hedgehog (SHH) expression in cells of the zone of polarizing activity (ZPA) in the distal posterior mesoderm. SHH, in turn, maintains FGFs in the apical ectodermal ridge (AER) which caps the distal tip of the limb bud. Crosstalk between FGF and SHH signaling is critical for patterned limb development, but the mechanisms underlying this feedback loop are not well characterized.
LHX2 Mediates the FGF-to-SHH Regulatory Loop during Limb Development.
No sample metadata fields
View SamplesWe describe a critical role for Cdk6 in JAK2V617F+ MPN evolution. The absence of Cdk6 ameliorates clinical symptoms and prolongs survival of JAK2V617F fl/+ vav-Cre mice. The Cdk6 protein interferes with three hallmarks of disease: besides regulating malignant stem cell quiescence, it promotes NFkB signaling and contributes to cytokine production while inhibiting apoptosis. The treatment with palbociclib did not mirror these effects, showing that the functions of Cdk6 in MPN pathogenesis are largely kinase-independent. Overall design: LSK-sorted (FACS) bone marrow cells from 8-week-old VavCre;Jak2+/+; Cdk6+/+, VavCre;Jak2V617F; Cdk6+/+, VavCre;Jak2V617F; Cdk6-/-, VavCre; Jak2+/+; Cdk6-/- mice, and the same cell type from palbociclib-treated (38mg/kg, 3x in one week) VavCre;Jak2V617F; Cdk6+/+ mice, n=3 for all genotypes
CDK6 coordinates <i>JAK2</i> <sup><i>V617F</i></sup> mutant MPN via NF-κB and apoptotic networks.
Specimen part, Treatment, Subject
View SamplesBackground: Immune checkpoint blockade improves survival in a subset of patients with non-small cell lung cancer (NSCLC), but robust biomarkers that predict response to PD-1 pathway inhibitors are lacking. Furthermore, our understanding of the diversity of the NSCLC tumor immune microenvironment remains limited. Methods: We performed comprehensive flow-cytometric immunoprofiling on both tumor and immune cells from 51 NSCLCs and integrated this analysis with clinical and histopathologic characteristics, next generation sequencing, mRNA expression, and PD-L1 immunohistochemistry (IHC). Results: Cytometric profiling identified an immunologically “hot” cluster with abundant CD8+ T cells expressing high levels of the PD-1 and TIM-3, and an immunologically “cold” cluster with lower relative abundance of CD8+ T cells and expression of inhibitory markers. The “hot” cluster was highly enriched for expression of genes associated with T cell trafficking and cytotoxic function, and high PD-L1 expression by IHC. There was no correlation between immunophenotype and KRAS or EGFR mutation, or patient smoking history, but we did observe an enrichment of squamous subtype and tumors with higher mutation burden in the “hot” cluster. Additionally, ~20% of cases had high B cell infiltrates with a subset producing IL-10. Conclusions: Our results support the use of immune-based metrics to study response and resistance to immunotherapy in lung cancer. Background: Immune checkpoint blockade improves survival in a subset of patients with non-small cell lung cancer (NSCLC), but robust biomarkers that predict response to PD-1 pathway inhibitors are lacking. Furthermore, our understanding of the diversity of the NSCLC tumor immune microenvironment remains limited. Methods: We performed comprehensive flow-cytometric immunoprofiling on both tumor and immune cells from 51 NSCLCs and integrated this analysis with clinical and histopathologic characteristics, next generation sequencing, mRNA expression, and PD-L1 immunohistochemistry (IHC). Results: Cytometric profiling identified an immunologically “hot” cluster with abundant CD8+ T cells expressing high levels of the PD-1 and TIM-3, and an immunologically “cold” cluster with lower relative abundance of CD8+ T cells and expression of inhibitory markers. The “hot” cluster was highly enriched for expression of genes associated with T cell trafficking and cytotoxic function, and high PD-L1 expression by IHC. There was no correlation between immunophenotype and KRAS or EGFR mutation, or patient smoking history, but we did observe an enrichment of squamous subtype and tumors with higher mutation burden in the “hot” cluster. Additionally, ~20% of cases had high B cell infiltrates with a subset producing IL-10. Conclusions: Our results support the use of immune-based metrics to study response and resistance to immunotherapy in lung cancer. Overall design: Single-cell comparison of normal and tumor infiltrated B-cells.
Multiparametric profiling of non-small-cell lung cancers reveals distinct immunophenotypes.
Specimen part, Subject
View Samples