refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon SRP148283
Total RNA-Seq of testis and ovaries of conventional raised (convR) and Germ-free (GF) female mice under ad libitum feeding regimen.
  • organism-icon Mus musculus
  • sample-icon 104 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gut microbiota and the circadian clock are both key regulators of the metabolic processes. Although recent evidence points to the impact of the circadian clock on microbiota, gut microbiota effect on diurnal host gene expression remains elusive. A transcriptome analysis of germ-free mice reveals subtle changes in circadian clock gene expression. However, a lack of microbiome leads to liver feminization and alters the expression of male-specific genes involved in lipid metabolism and xenobiotic detoxification associated with sustained activation of the Growth Hormone pathway. These results emphasize the mutual interaction of gut microbiota and its host even on unexpected functions. Overall design: Total RNA-Seq of testis and ovaries of conventional raised (convR) and Germ-free (GF) female mice under ad libitum feeding regime.

Publication Title

The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP148287
Total RNA-Seq of primary hepatocytes treated with serum of conventionally raised (convR) and Germ-free (GF) male and female mice.
  • organism-icon Mus musculus
  • sample-icon 107 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gut microbiota and the circadian clock are both key regulators of the metabolic processes. Although recent evidence points to the impact of the circadian clock on microbiota, gut microbiota effect on diurnal host gene expression remains elusive. A transcriptome analysis of germ-free mice reveals subtle changes in circadian clock gene expression. However, a lack of microbiome leads to liver feminization and alters the expression of male-specific genes involved in lipid metabolism and xenobiotic detoxification associated with sustained activation of the Growth Hormone pathway. These results emphasize the mutual interaction of gut microbiota and its host even on unexpected functions. Overall design: Total RNA-Seq of primary hepatocytes treated with serum of conventionally raised (convR) and Germ-free (GF) male and female mice.

Publication Title

The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP148282
Total RNA-Seq of Germ-free (GF) male mice liver injected with ghrelin.
  • organism-icon Mus musculus
  • sample-icon 92 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gut microbiota and the circadian clock are both key regulators of the metabolic processes. Although recent evidence points to the impact of the circadian clock on microbiota, gut microbiota effect on diurnal host gene expression remains elusive. A transcriptome analysis of germ-free mice reveals subtle changes in circadian clock gene expression. However, a lack of microbiome leads to liver feminization and alters the expression of male-specific genes involved in lipid metabolism and xenobiotic detoxification associated with sustained activation of the Growth Hormone pathway. These results emphasize the mutual interaction of gut microbiota and its host even on unexpected functions. Overall design: Total RNA-Seq of Germ-free (GF) male mice liver injected with ghrelin.

Publication Title

The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism.

Sample Metadata Fields

Sex, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP148281
Total RNA-Seq of Germ-free (GF) male mice liver injected with growth hormone.
  • organism-icon Mus musculus
  • sample-icon 84 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gut microbiota and the circadian clock are both key regulators of the metabolic processes. Although recent evidence points to the impact of the circadian clock on microbiota, gut microbiota effect on diurnal host gene expression remains elusive. A transcriptome analysis of germ-free mice reveals subtle changes in circadian clock gene expression. However, a lack of microbiome leads to liver feminization and alters the expression of male-specific genes involved in lipid metabolism and xenobiotic detoxification associated with sustained activation of the Growth Hormone pathway. These results emphasize the mutual interaction of gut microbiota and its host even on unexpected functions. Overall design: Total RNA-Seq of Germ-free (GF) male mice liver injected with growth hormone.

Publication Title

The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism.

Sample Metadata Fields

Sex, Specimen part, Cell line, Treatment, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact