Arabidopsis thaliana genes MLO2 (Mildew resistance locus-O 2), MLO6 and MLO12 exhibit unequal genetic redundancy with respect to the modulation of defense responses against powdery mildew fungi and the control of developmental phenotypes such as premature leaf decay. We show that early chlorosis and necrosis of rosette leaves in mlo2 mlo6 mlo12 mutants reflects an authentic but untimely leaf senescence program. Comparative transcriptional profiling revealed that transcripts of several genes encoding tryptophan/indole biosynthetic enzymes hyper-accumulate during vegetative development in the mlo2 mlo6 mlo12 mutant. Elevated expression levels of these genes correlate with altered steady-state levels of several indolic metabolites, including the phytoalexin camalexin and indolic glucosinolates, during development in the mlo2 single and the mlo2 mlo6 mlo12 triple mutant. Results of genetic epistasis analysis suggest a decisive role for indolic metabolites in mlo2-conditioned antifungal defense against both biotrophic powdery mildews and a camalexin-sensitive strain of the necrotrophic fungus, Botrytis cinerea. The wound- and pathogen-responsive callose synthase Powdery mildew resistance 4/Glucan-synthase-like 5 (PMR4/GSL5) was found to be responsible for the spontaneous callose deposits in mlo2 mutant plants but dispensable for mlo2-conditioned penetration resistance. Our data strengthen the notion that powdery mildew resistance of mlo2 genotypes is based on the same defense execution machinery as innate antifungal immune responses that restrict invasion of non-adapted fungal pathogens.
Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant.
Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Rapamycin response in tumorigenic and non-tumorigenic hepatic cell lines.
No sample metadata fields
View SamplesTwo rat hepatic cell lines, WB-F344 and WB311, were characterized for the effect of rapamycin on gene expression. The WB311 cell line, which is tumorigenic and resistant to the growth inhibitory effects of rapamycin, was originally derived from the WB-F344 parental hepatic epithelial cell line. The goal of this experiment was to identify genes that responded to rapamycin in the sensitive cells but not the resistant cells, thereby providing insight into the mechanism of rapamycin resistance.
Rapamycin response in tumorigenic and non-tumorigenic hepatic cell lines.
No sample metadata fields
View SamplesThe interplay between mitogenic and proinflammatory signaling pathways play key roles in determining the phenotypes and clinical outcomes of breast cancers. We have used global nuclear run-on coupled with deep sequencing to characterize the immediate transcriptional responses of MCF-7 breast cancer cells treated with estradiol, TNFa, or both. In addition, we have integrated these data with chromatin immunoprecipitation coupled with deep sequencing for estrogen receptor alpha (ERa), the pioneer factor FoxA1 and the p65 subunit of the NF-?B transcription factor. Our results indicate extensive transcriptional interplay between these two signaling pathways, which is observed for a number of classical mitogenic and proinflammatory protein-coding genes. In addition, GRO-seq has allowed us to capture the transcriptional crosstalk at the genomic locations encoding for long non-coding RNAs, a poorly characterized class of RNAs which have been shown to play important roles in cancer outcomes. The synergistic and antagonistic interplay between estrogen and TNFa signaling at the gene level is also evident in the patterns of ERa and NF-?B binding, which relocalize to new binding sites that are not occupied by either treatment alone. Interestingly, the chromatin accessibility of classical ERa binding sites is predetermined prior to estrogen treatment, whereas ERa binding sites gained upon co-treatment with TNFa require NF-?B and FoxA1 to promote chromatin accessibility de novo. Our data suggest that TNFa signaling recruits FoxA1 and NF-?B to latent ERa enhancer locations and directly impact ERa enhancer accessibility. Binding of ERa to latent enhancers upon co-treatment, results in increased enhancer transcription, target gene expression and altered cellular response. This provides a mechanistic framework for understanding the molecular basis for integration of mitogenic and proinflammatory signaling in breast cancer. Overall design: Using GRO-seq and ChIP-seq (ER, FoxA1 and p65) to assay the molecular crosstalk of MCF-7 cells treated with E2, TNFa or both E2+TNFa.
TNFα signaling exposes latent estrogen receptor binding sites to alter the breast cancer cell transcriptome.
No sample metadata fields
View SamplesInfection of RAW264.7 cells with RHku80 parasites or mock-infection for 24 hours
Infection by Toxoplasma gondii specifically induces host c-Myc and the genes this pivotal transcription factor regulates.
Cell line
View SamplesA gene expression profile of BRCAness was defined in publicly available expression data of 61 patients with epithelial ovarian cancer (34 patients with BRCA-1 or BRCA-2 mutations and 27 patients with sporadic disease). This dataset is publicly available at http://jnci.oxfordjournals.org/cgi/content/full/94/13/990/DC1
Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer.
Age, Disease stage
View SamplesLiver transplantation is the only therapeutic option for patients with end-stage liver disease. The shortage of donor organs has led to the search for alternative therapies to restore liver function and bridge patients to transplantation. Our previous work has shown that the proliferation of late gestation E19 fetal hepatocytes is mitogen-independent. This is manifested as differences in the control of ribosome biogenesis, global translation, cell cycle progression and gene expression. In the present study, we investigated whether E19 fetal hepatocytes would engraft and repopulate an injured adult liver.
Engraftment and Repopulation Potential of Late Gestation Fetal Rat Hepatocytes.
Specimen part
View SamplesTranscriptome of murine testis from wild type mice and mice lacking telomerase for three generations (G3-Terc), Ku86 or both telomerase and Ku86.
Effectors of mammalian telomere dysfunction: a comparative transcriptome analysis using mouse models.
No sample metadata fields
View Samplesstrand specific sequencing of RNAs from MAoECs to determine the endothelial-specific expression profile of protein-coding and long non-coding RNAs Overall design: Total RNA was isolated from cultured MAoECs (passage 4) and processed for a strand-specific RNA sequencing. The RNA purity and integrity were assessed using the Fragment Analyzer Automated CE System (Advanced Analytical). A RQN of 8.8 and a 28S/18S ratio of 2.2 were considered acceptable for next generation sequencing assay. Five µg of DNase-treated RNA were used to prepare Massive Analysis of cDNA ends (MACE) libraries needed to perform a DNA-Methylation-Sequencing (Meth-Seq) PCR bias free quantification with TrueQuant Technology, followed by a high-throughput sequencing on the Illumina Genome Analyzer II system (GenXPro GmbH, Frankfurt, Germany). The procedure consist in the extraction of poly-adenylated RNA from 5 µg RNA and reverse transcribed with biotinylated poly(T) primers. cDNA is fragmented to an average size of 250 bp. Biotinylated ends are captured by streptavidin beads and ligated to modified adapters (TrueQuant DNA adapter, GenXPro). The libraries are amplified by PCR, purified by SPRI beads and sequenced (2 x 100 bp Illumina HiSeq2000 TrueSeq, 2 x 20 Mio. Reads poly-A selected paired-end reads). Paired end sequencing of both DNA strands from each end is required for fragment strand specificity.
miR-103 promotes endothelial maladaptation by targeting lncWDR59.
Specimen part, Subject
View SamplesHuman lymphoblastoid cell lines (EBV-immortalised B cells, LcL) obtained from subjects of different age (young 28-40 years, centenarians >95 years) were analysed for gene expression at basal culture conditions and after 48 hours of serum starvation. Lymphoid B cells from centenarians were more resistant to apoptosis induction and displayed a more developed lysosomal compartment, the most critical component of phagic machinery. In addition, cells from centenarians were capable of engulfing and digesting other cells, i.e. their siblings (even entire cells). This behavior was improved by nutrient deprivation, but strikingly, it was unaffected by the autophagy-modulating drugs rapamycin, an autophagy inducer, and 3-methyladenine, an autophagy inhibitor.
Survival features of EBV-stabilized cells from centenarians: morpho-functional and transcriptomic analyses.
Sex, Age, Specimen part, Subject
View Samples